【題目】下面四個(gè)推理中,屬于演繹推理的是( 。

A. 觀察下列各式:72=49,73=343,74=2401,…,則72015的末兩位數(shù)字為43

B. 觀察,可得偶函數(shù)的導(dǎo)函數(shù)為奇函數(shù)

C. 在平面上,若兩個(gè)正三角形的邊長(zhǎng)比為1:2,則它們的面積比為1:4,類(lèi)似的,在空間中,若兩個(gè)正四面體的棱長(zhǎng)比為1:2,則它們的體積之比為1:8

D. 已知堿金屬都能與水發(fā)生還原反應(yīng),鈉為堿金屬,所以鈉能與水發(fā)生反應(yīng)

【答案】D

【解析】A :是由一般到特殊,故屬于合情推理。

B:同上選項(xiàng),也是合情推理。

C:是由特殊到特殊,是類(lèi)比推理。

D:有大前提:堿金屬都能與水發(fā)生還原反應(yīng),小前提:鈉為堿金屬,結(jié)論:鈉能與水發(fā)生反應(yīng)。故是演繹推理。

故答案為:D。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行六面體中,平面,且 ,

(1)求異面直線所成角的余弦值;

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三理科某班有男同學(xué)30,女同學(xué)15老師按照分層抽樣的方法組建一個(gè)6人的課外興趣小組.

(1)求課外興趣小組中男、女同學(xué)各應(yīng)抽取的人數(shù);

(2)在一周的技能培訓(xùn)后從這6人中選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再?gòu)男〗M內(nèi)剩下的同學(xué)中選1名同學(xué)做實(shí)驗(yàn)求選出的兩名同學(xué)中恰好僅有一名女同學(xué)的概率;

(3)實(shí)驗(yàn)結(jié)束后,第一次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為1.6、21.9、2.5、2,第二次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)是2.1、1.8、1.9、2、2.2請(qǐng)問(wèn)哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=kex﹣x3+2 (kR)恰有三個(gè)極值點(diǎn)xl,x2,x3,且xlx2x3

(I)求k的取值范圍:

(II)求f(x2)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)處的切線與直線垂直.

(1)求實(shí)數(shù)值;

(2)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè),且數(shù)列的前項(xiàng)和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線C1 (t為參數(shù)),C2 (θ為參數(shù)).若曲線C1上的點(diǎn)P對(duì)應(yīng)的參數(shù)為tQ為曲線C2上的動(dòng)點(diǎn),則線段PQ的中點(diǎn)M到直線C3 (t為參數(shù))距離的最小值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程是,將向上平移2個(gè)單位得到曲線. 

(1)求曲線的極坐標(biāo)方程;

(2)直線的參數(shù)方程為為參數(shù)),判斷直線與曲線的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一直角邊為股,斜邊為弦.若a,b,c為直角三角形的三邊,其中c為斜邊,則a2b2c2,稱這個(gè)定理為勾股定理.現(xiàn)將這一定理推廣到立體幾何中:在四面體OABC中,∠AOBBOCCOA90°,S為頂點(diǎn)O所對(duì)面的面積,S1,S2,S3分別為側(cè)面OAB,OAC,OBC的面積,則下列選項(xiàng)中對(duì)于S,S1S2,S3滿足的關(guān)系描述正確的為(  )

A. S2SSS B.

C. SS1S2S3 D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,全校學(xué)生參加了這次競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取正整數(shù),滿分為100)作為樣本進(jìn)行統(tǒng)計(jì),請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表(如圖所示),解決下列問(wèn)題.

組別

分組

頻數(shù)

頻率

1

[50,60)

8

0.16

2

[6070)

a

3

[70,80)

20

0.40

4

[80,90)

0.08

5

[90100]

2

b

合計(jì)

(1)求出a,b的值;

(2)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(80)的同學(xué)中隨機(jī)抽取2名同學(xué)到廣場(chǎng)參加環(huán)保知識(shí)的志愿宣傳活動(dòng).

①求所抽取的2名同學(xué)中至少有1名同學(xué)來(lái)自第5組的概率;

②求所抽取的2名同學(xué)來(lái)自同一組的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案