14.若f(x)=$\frac{1}{2^x+1}$-$\frac{1}{2}$,則函數(shù)f(x)為( 。
A.奇函數(shù)B.偶函數(shù)C.既奇又偶函數(shù)D.非奇非偶函數(shù)

分析 根據(jù)函數(shù)奇偶性的定義,判斷函數(shù)f(x)為定義域R上的奇函數(shù).

解答 解:∵函數(shù)f(x)=$\frac{1}{2^x+1}$-$\frac{1}{2}$,x∈R,
∴f(-x)=$\frac{1}{{2}^{-x}+1}$-$\frac{1}{2}$=$\frac{{2}^{x}}{{2}^{x}+1}$-$\frac{1}{2}$=-$\frac{1}{{2}^{x}+1}$+$\frac{1}{2}$=-f(x),
∴函數(shù)f(x)為定義域R上的奇函數(shù).

點(diǎn)評(píng) 本題考查了利用奇偶性的定義判斷函數(shù)的奇偶性問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知A(8,0),B(0,6),O(0,0),則△AOB的外接圓的方程是(x-4)2+(y-3)2=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知關(guān)于x的方程x2-kx+k+3=0,的兩個(gè)不相等的實(shí)數(shù)根都大于2,則實(shí)數(shù)k的取值范圍是(  )
A.k>6B.4<k<7C.6<k<7D.k>6或k>-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若直線l:y=(a+1)x-1與曲線C:y2=ax恰好有一個(gè)公共點(diǎn),則實(shí)數(shù)a的值構(gòu)成的集合為( 。
A.{-1,0}B.{-2,-$\frac{4}{5}$}C.{-1,-$\frac{4}{5}$}D.{-1,-$\frac{4}{5}$,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=x2+2xsinθ-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(Ⅰ)當(dāng)sinθ=-$\frac{1}{2}$,求f(x)的最大值和最小值;
(Ⅱ)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是單調(diào)函數(shù),且θ∈[0,2π],求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(1)計(jì)算:$lg4+2lg5+{(0.25)^{-\frac{1}{2}}}-{8^{\frac{2}{3}}}$;
(2)已知f(x)在R上是奇函數(shù),且f(x+2)=-f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,求f(2015).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若函數(shù)f(x)=$\left\{\begin{array}{l}{x,x≤1}\\{(\frac{1}{2})^{x-1},x>1}\end{array}\right.$,則不等式f(x2-3)>f($\frac{1}{2}$x)的解集為(-∞,-$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在復(fù)平面中,滿足等式|z+i|=|4-3i|的復(fù)數(shù)z所對(duì)應(yīng)點(diǎn)的軌跡是( 。
A.一條直線B.兩條直線C.D.橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知sinα=-$\frac{\sqrt{10}}{10}$,且α∈(π,$\frac{3π}{2}$),則tan2α=( 。
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案