9.若tanα=-$\frac{1}{3}$,則sin2α=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

分析 利用sin2α=2sinαcosα=$\frac{2tanα}{1+ta{n}^{2}α}$,代入計(jì)算可得結(jié)論.

解答 解:∵tanα=-$\frac{1}{3}$,
∴sin2α=2sinαcosα=$\frac{2tanα}{1+ta{n}^{2}α}$=-$\frac{3}{5}$.
故選:C.

點(diǎn)評(píng) 本題考查三角函數(shù)值的計(jì)算,考查二倍角公式的運(yùn)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.下列說(shuō)法之和正確的序號(hào)是:②④.
①函數(shù)y=log2(x2-2x-3)的單調(diào)增區(qū)間為(1,+∞);
②若扇形的周長(zhǎng)是6cm,面積是2cm2,則扇形的中心角的弧度數(shù)是1或4;
③函數(shù)y=lg(x+1)+lg(x-1)為偶函數(shù);
④若x+$\frac{1}{x}$=2$\sqrt{2}$,則$\frac{1+{x}^{4}}{{x}^{2}}$的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知O是坐標(biāo)原點(diǎn),點(diǎn)A(-$\frac{1}{3}$,2),若點(diǎn)M(x,y)為平面區(qū)域$\left\{\begin{array}{l}{y≤2x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則|$\overrightarrow{OA}$+$\overrightarrow{OM}$|的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知數(shù)列{log2an}為等差數(shù)列,且a1=$\frac{1}{4}$,a5=64,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在圓x2+y2=4上取一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線段PD,D為垂足.
(1)當(dāng)點(diǎn)P在圓上運(yùn)動(dòng)時(shí),線段PD的中點(diǎn)M的軌跡是什么?
(2)若直線y=x+$\frac{1}{2}$與(1)問(wèn)中的點(diǎn)M的軌跡相交于A、B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知二次函數(shù)f(x)圖象的頂點(diǎn)坐標(biāo)為(1,-1)且圖象經(jīng)過(guò)原點(diǎn).
(1)求f(x)的解析式;
(2)作出函數(shù)|f(x)|的圖象;
(3)根據(jù)圖象分別指出k為何值時(shí),關(guān)于x的方程|f(x)=k|有2個(gè)實(shí)根?3個(gè)實(shí)根?4個(gè)實(shí)根?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.用秦九韶算法計(jì)算函數(shù)f(x)=2x4+3x3+5x-4,當(dāng)x=2時(shí),v2的值為(  )
A.10B.2C.12D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.$\sqrt{3}$sinx+cosx=( 。
A.sin(x+$\frac{π}{3}$)B.sin(x+$\frac{π}{6}$)C.2sin(x+$\frac{π}{3}$)D.2sin(x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>$\frac{1}{2}$,且當(dāng)x∈[$\frac{1}{2}$,a]時(shí),f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案