14.已知二次函數(shù)f(x)圖象的頂點(diǎn)坐標(biāo)為(1,-1)且圖象經(jīng)過(guò)原點(diǎn).
(1)求f(x)的解析式;
(2)作出函數(shù)|f(x)|的圖象;
(3)根據(jù)圖象分別指出k為何值時(shí),關(guān)于x的方程|f(x)=k|有2個(gè)實(shí)根?3個(gè)實(shí)根?4個(gè)實(shí)根?

分析 (1)設(shè)出二次函數(shù)的解析式,利用已知條件列出方程求解即可.
(2)利用二次函數(shù)以及函數(shù)的對(duì)稱性,作出函數(shù)的圖形即可.
(3)結(jié)合函數(shù)的圖象,直接說(shuō)明方程的解的個(gè)數(shù)即可.

解答 解:(1)設(shè)二次函數(shù)f(x)的解析式為f(x)=ax2+bx+c(a≠0),
 依題意有f(0)=0 可得:c=0,f(1)=-1 可得:a+b=-1,
由頂點(diǎn)坐標(biāo)(1,-1)可得:對(duì)稱軸為x=-$\frac{2a}=1$,
解得:a=1,b=-2,c=0.
故函數(shù)f(x)的解析式為f(x)=x2-2x.
(2)函數(shù)|f(x)|的圖象如圖:

(3)由圖象易知:當(dāng)k=0或k>1時(shí),方程|f(x)|=k有兩個(gè)實(shí)根;
當(dāng)k=1時(shí),方程|f(x)=k|有三個(gè)實(shí)根;
當(dāng)0<k<1時(shí),方程|f(x)|=k有四個(gè)實(shí)根.

點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì),函數(shù)的圖象的作法,函數(shù)的零點(diǎn)與方程的根的關(guān)系,考查數(shù)形結(jié)合思想以及轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,點(diǎn)M是CC1的中點(diǎn),則三棱錐C1-BDM的體積是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=xlnx,g(x)=$\frac{1}{8}$x2-x.
(1)求f(x)的單調(diào)區(qū)間和極值點(diǎn);
(2)是否存在實(shí)數(shù)m,使得函數(shù)h(x)=$\frac{3f(x)}{4x}$+m+g(x)有三個(gè)不同的零點(diǎn)?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知命題p:?x∈R,x2+ax+1≥0,寫(xiě)出¬p:?x∈R,x2+ax+1<0;若命題p是假命題,則實(shí)數(shù)a的取值范圍是a<-2或a>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若tanα=-$\frac{1}{3}$,則sin2α=( 。
A.$\frac{4}{5}$B.-$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合M={x|$\frac{x-3}{x+5}$<0},N={y|y2+6y-7≥0},則M∩N=( 。
A.(-5,1]B.[1,3)C.D.(-5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.平面直角坐標(biāo)系xOy中,已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,左、右焦點(diǎn)分別是P和Q,以P為圓心,以3為半徑的圓與以Q為圓心,以1為半徑的圓相交,交點(diǎn)在橢圓C1上.
(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}+2}$=1的左、右焦點(diǎn)分別為F1和F2,若動(dòng)直線l:y=kx+m(k,m∈R)與橢圓C2有且僅有一個(gè)公共點(diǎn),且F1M⊥l于M,F(xiàn)2N⊥l于N,設(shè)S為四邊形F1MNF2的面積,請(qǐng)求出S的最大值,并說(shuō)明此時(shí)直線l的位置;若S無(wú)最大值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=(x2-2x)lnx+ax2+2.
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)設(shè)函數(shù)g(x)=f(x)-x-2,
①當(dāng)函數(shù)g(x)有且只有一個(gè)零點(diǎn)時(shí),求a的值;
②在①的條件下,當(dāng)e-1<x<e時(shí),g(x)≥m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在直角坐標(biāo)系xOy中,過(guò)點(diǎn)P(2,-1)的直線l的傾斜角為45°.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極坐標(biāo)建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,直線l和曲線C的交點(diǎn)為A,B.
(1)求曲線C的直角坐標(biāo)方程;  
 (2)求|PA|•|PB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案