如右圖,過原點O作⊙O1:x2+y2-6x-8y+20=0的兩條切線,設(shè)切點分別為P、Q,則線段PQ的長為________.

 

【答案】

4

【解析】因為圓x2+y2-6x-8y+20=0 可化為 (x-3)2+(y-4)2 =5,圓心(3,4)到原點的距離為5,故cos=,所以cos∠PO1Q=2cos2α-1=-,所以|PQ|=4

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知圓O:x2+y2=2交x軸于A,B兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為
2
2
的橢圓,點F為其右焦點.過原點O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知圓Ox2+y2=2交x軸于A,B兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為的橢圓,點F為其右焦點.

過原點O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點Q

(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)證明:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知圓O:x2+y2=2交x軸于A,B兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為數(shù)學(xué)公式的橢圓,點F為其右焦點.過原點O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與圓O相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省徐州市新沂一中高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,已知圓O:x2+y2=2交x軸于A,B兩點,點P(-1,1)為圓O上一點.曲線C是以AB為長軸,離心率為的橢圓,點F為其右焦點.過原點O作直線PF的垂線交橢圓C的右準(zhǔn)線l于點Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)證明:直線PQ與圓O相切.

查看答案和解析>>

同步練習(xí)冊答案