15.過點(-1,0)的直線截圓x2+y2=1所得弦長為$\sqrt{2}$,且與直線ax+y+2=0垂直,則實數(shù)a的值為( 。
A.-1B.1C.±1D.$\sqrt{3}$

分析 由題意,設(shè)直線方程為x-ay+c=0,代入(-1,0),可得c=1,直線方程為x-ay+1=0,利用勾股定理即點到直線的距離公式,建立方程,即可得出結(jié)論.

解答 解:由題意,設(shè)直線方程為x-ay+c=0,代入(-1,0),可得c=1,
∴直線方程為x-ay+1=0,
∵點(-1,0)的直線截圓x2+y2=1所得弦長為$\sqrt{2}$,
∴圓心到直線的距離d=$\frac{1}{\sqrt{1+{a}^{2}}}=\sqrt{1-\frac{1}{2}}$
∴a=±1,
故選C.

點評 本題考查了相互垂直的直線斜率之間的關(guān)系、勾股定理、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等差數(shù)列{an}中,a3=5,a5=3,則該數(shù)列的前10項的S10等于( 。
A.24B.25C.27D.28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知各項均為正數(shù)的數(shù)列{an}滿足:an+12=tan2+(t-1)anan+1,其中n∈N*
(1)若a2-a1=8,a3=a,且數(shù)列{an}是唯一的.
①求a的值;
②設(shè)數(shù)列{bn}滿足bn=$\frac{{n{a_n}}}{{4(2n+1){2^n}}}$,是否存在正整數(shù)m,n(1<m<n),使得b1,bm,bn成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={1,2},B={6},C={3,4,7},從這三個集合中各取一個元素構(gòu)成空間直角坐標(biāo)系中點的坐標(biāo),則確定的不同點的個數(shù)為(  )
A.3B.12C.24D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sinα=$\frac{3}{5}$,α∈(${\frac{π}{2}$,π),cosβ=$\frac{5}{13}$且β是第一象限角,求sin(α+β),cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知acos2$\frac{C}{2}$+ccos2$\frac{A}{2}$=$\frac{3}{2}$b.
(1)求證:a,b,c成等差數(shù)列;
(2)若b=2$\sqrt{2}$,B=$\frac{π}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}的前n和為Sn,a1=1,Sn=nan-2n2+2n(n∈N*).
(1)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關(guān)于n的表達(dá)式;
(2)是否存在自然數(shù)n,使得S1+$\frac{S_2}{2}$+$\frac{S_3}{3}$+…+$\frac{S_n}{n}$+2n=1124?若存在,求出n的值; 若不存在,請說明理由;
(3)設(shè)cn=$\frac{2}{{n({{a_n}+7})}}$(n∈N*),Tn=c1+c2+c3+…+cn(n∈N*),若不等式Tn>$\frac{m}{32}$(m∈Z),對n∈N*恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知G點為△ABC的重心,且滿足BG⊥CG,若$\frac{1}{tanB}$+$\frac{1}{tanC}$=$\frac{λ}{tanA}$,則實數(shù)λ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知sinx=$\frac{4}{5}$,且x是第一象限角,則cosx=$\frac{3}{5}$.

查看答案和解析>>

同步練習(xí)冊答案