分析 取AB的中點D,得出$\overrightarrow{OA}$+$\overrightarrow{OB}$=2$\overrightarrow{OD}$,化簡$\overrightarrow{OP}$,根據(jù)平面向量的共線定理,得出P在邊AB的中線所在的直線上.
解答 解:取AB的中點D,則$\overrightarrow{OA}$+$\overrightarrow{OB}$=2$\overrightarrow{OD}$;
∵$\overrightarrow{OP}$=$\frac{1}{3}$[(1-λ)$\overrightarrow{OA}$+(1-λ)$\overrightarrow{OB}$+(1+2λ)$\overrightarrow{OC}$]
=$\frac{1}{3}$(1-λ)($\overrightarrow{OA}$+$\overrightarrow{OB}$)+$\frac{1}{3}$(1+2λ)$\overrightarrow{OC}$
=$\frac{2}{3}$(1-λ)$\overrightarrow{OD}$+$\frac{1}{3}$(1+2λ)$\overrightarrow{OC}$,
且$\frac{2}{3}$(1-λ)+$\frac{1}{3}$(1+2λ)=1,
∴P、C、D三點共線;
∴點P在邊AB上的中線所在的直線上.
點評 本題考查了平面向量的加法運算以及三點共線的應(yīng)用問題,也考查了數(shù)形結(jié)合與轉(zhuǎn)化思想,是基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 8 | D. | 10 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com