11.已知函數(shù)f(x)=sin2x+cos2x.
(1)求f(x) 的周期及單調(diào)遞增區(qū)間.
(2)當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),求f(x)的值域.

分析 (1)利用輔助角公式即可轉(zhuǎn)化為:y=$\sqrt{2}$sin(2x+$\frac{π}{4}$),利用周期公式可求最小正周期,由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,即可求得函數(shù)的單調(diào)遞增區(qū)間.
(2)由已知可求2x+$\frac{π}{4}$的范圍,利用正弦函數(shù)的圖象和性質(zhì)即可得解其值域.

解答 解:∵函數(shù)f(x)=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
∴周期為T=$\frac{2π}{2}$=π.
∴由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,k∈Z,解得:kπ-$\frac{3π}{8}$≤x≤kπ+$\frac{π}{8}$,k∈Z,
∴f(x) 的單調(diào)遞增區(qū)間為:(kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$),k∈Z,
(2)∵當(dāng)x∈[-$\frac{π}{4}$,$\frac{π}{4}$]時(shí),2x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],
∴f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的值域?yàn)椋篬-1,$\sqrt{2}$].

點(diǎn)評 本題考查正弦函數(shù)的單調(diào)性及周期性與最值,著重考查正弦函數(shù)的圖象與性質(zhì)的靈活應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,在邊長為4的菱形ABCD中,∠DAB=60°,點(diǎn)E,F(xiàn)分別是邊CD,CB的中點(diǎn),EF∩AC=O,沿EF將△CEF翻折到△PEF,連接PA,PB,PD,得到五棱錐P-ABFED,且AP=$\sqrt{30}$,PB=$\sqrt{10}$.
(1)求證:BD⊥平面POA;
(2)求二面角B-AP-O的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.${{(2{{x}^{3}}-\frac{1}{\sqrt{x}})}^{n}}$的展開式中各二項(xiàng)式系數(shù)之和為128,則${{(2{{x}^{3}}-\frac{1}{\sqrt{x}})}^{n}}$的展開式中常數(shù)項(xiàng)是( 。
A.-14B.14C.-42D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C所對的邊分別為a,b,c,且sin2A+sin2C=sin2B-sinAsinC.
(1)求B的大。
(2)設(shè)∠BAC的平分線AD交BC于D,AD=2$\sqrt{3}$,BD=1,求sin∠BAC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.解方程:(x2+x)2-3(x2+x)+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若關(guān)于x的不等式2${\;}^{{x}^{2}-ax}$>($\frac{1}{2}$)2a在實(shí)數(shù)集上恒成立,則實(shí)數(shù)a的取值范圍(0,8).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在平行四邊形ABCD中,∠A=$\frac{π}{3}$,邊AB,AD的長分別為2,1,若M,N分別是邊BC,CD上的點(diǎn),且滿足$\frac{|\overrightarrow{BM}|}{|\overrightarrow{BC}|}$=$\frac{|\overrightarrow{CN}|}{|\overrightarrow{CD}|}$,則$\overrightarrow{AM}$•$\overrightarrow{AN}$的取值范圍是( 。
A.[1,4]B.[2,5]C.[2,4]D.[1,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知球O的體積為36π,則該球的內(nèi)接圓錐的體積的最大值為$\frac{32π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某環(huán)線地鐵按內(nèi)、外環(huán)線同時(shí)運(yùn)行,內(nèi)、外環(huán)線的長均為30km(忽略內(nèi)、外環(huán)線長度差異).
(1)當(dāng)9列列車同時(shí)在內(nèi)環(huán)線上運(yùn)行時(shí),要使內(nèi)環(huán)線乘客最長候車時(shí)間為10min,求內(nèi)環(huán)線列車的最小平均速度;
(2)新調(diào)整的方案要求內(nèi)環(huán)線列車平均速度為25km/h,外環(huán)線列車平均速度為30km/h.現(xiàn)內(nèi)、外環(huán)線共有18列列車全部投入運(yùn)行,問:要使內(nèi)、外環(huán)線乘客的最長候車時(shí)間之差最短,則內(nèi)、外環(huán)線應(yīng)各投入幾列列車運(yùn)行?

查看答案和解析>>

同步練習(xí)冊答案