分析 (1)已知等式利用正弦定理化簡得到一個等式,再利用余弦定理求出cosB的值,即可求出B的度數(shù);
(2)利用正弦定理可求sin∠BAD的值,利用倍角公式可求cos∠BAC,進而利用同角三角函數(shù)基本關系式可求sin∠BAC的值.
解答 (本小題滿分12分)
解:(1)在△ABC中,∵sin2A+sin2C=sin2B-sinAsinC,
∴a2+c2=b2-ac,…(2分)
∴cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=-$\frac{ac}{2ac}$=-$\frac{1}{2}$,…(4分)
∵B∈(0,π),…(5分)
∴B=$\frac{2π}{3}$.…(6分)
(2)在△ABD中,由正弦定理:$\frac{AD}{sinB}=\frac{BD}{sin∠BAD}$,
∴sin∠BAD=$\frac{BDsinB}{AD}$=$\frac{1-\frac{\sqrt{3}}{2}}{2\sqrt{3}}$=$\frac{1}{4}$,…(8分)
∴cos∠BAC=cos2∠BAD=1-2sin2∠BAD=1-2×$\frac{1}{16}$=$\frac{7}{8}$,…(10分)
∴sin∠BAC=$\sqrt{1-co{s}^{2}∠BAC}$=$\sqrt{1-(\frac{7}{8})^{2}}$=$\frac{\sqrt{15}}{8}$. …(12分)
點評 此題考查了正弦、余弦定理,同角三角函數(shù)間的基本關系,熟練掌握定理是解本題的關鍵,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
年份 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
年份代號t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.6 | 3.0 | 3.3 | 4.1 | 4.5 | 4.9 | 5.6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com