分析 (1)設(shè)內(nèi)環(huán)線列車的平均速度為v千米/小時,根據(jù)內(nèi)環(huán)線乘客最長候車時間為10分鐘,可得$\frac{30}{9v}$×60≤10,從而可求內(nèi)環(huán)線列車的最小平均速度;
(2)設(shè)內(nèi)環(huán)線投入x列列車運(yùn)行,則外環(huán)線投入(18-x)列列車運(yùn)行,分別求出內(nèi)、外環(huán)線乘客最長候車時間t1=$\frac{30}{25x}$×60=$\frac{72}{x}$,t2=$\frac{30}{30(18-x)}$×60=$\frac{60}{18-x}$.t=|t1-t2|=$\left\{\begin{array}{l}{\frac{72}{x}+\frac{60}{x-18},x≤9,x∈{N}_{+}}\\{-(\frac{72}{x}+\frac{60}{x-18}),10≤x≤17,x∈{N}_{+}}\end{array}\right.$在(0,9)遞減,在(10,17)遞增,即可求得結(jié)論.
解答 解:(1)設(shè)內(nèi)環(huán)線列車運(yùn)行的平均速度為v km/h,由題意可知$\frac{30}{9v}$×60≤10,所以v≥20.
所以,要使內(nèi)環(huán)線乘客最長候車時間為10 min,列車的最小平均速度是20 km/h.
(2)設(shè)內(nèi)環(huán)線投入x列列車運(yùn)行,則外環(huán)線投入(18-x)列列車運(yùn)行,
內(nèi)、外環(huán)線乘客最長候車時間分別為t1、t2 min,
則t1=$\frac{30}{25x}$×60=$\frac{72}{x}$,t2=$\frac{30}{30(18-x)}$×60=$\frac{60}{18-x}$.
于是有t=|t1-t2|=$\left\{\begin{array}{l}{\frac{72}{x}+\frac{60}{x-18},x≤9,x∈{N}_{+}}\\{-(\frac{72}{x}+\frac{60}{x-18}),10≤x≤17,x∈{N}_{+}}\end{array}\right.$
在(0,9)遞減,在(10,17)遞增.
又t(9)>t(10),所以x=10,
所以當(dāng)內(nèi)環(huán)線投入10列,外環(huán)線投入8列列車運(yùn)行時,內(nèi)、外環(huán)線乘客最長候車時間之差最短.
點(diǎn)評 本題考查函數(shù)模型的構(gòu)建,考查利用數(shù)學(xué)模型解決實(shí)際問題,解題的關(guān)鍵是正確求出乘客最長候車時間.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | $-\frac{24}{7}$ | C. | $-\frac{3}{4}$ | D. | $-\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | 21 | C. | 22 | D. | 23 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com