【題目】已知一塊邊長為4的正方形鋁板(如圖),請設計一種裁剪方法,用虛線標示在答題卡本題圖中,通過該方案裁剪,可焊接做成一個密封的正四棱柱(底面是正方形且側(cè)棱垂于底面的四棱柱),且該四棱柱的全面積等于正方形鋁板的面積(要求裁剪的塊數(shù)盡可能少,不計焊接縫的面積),則該四棱柱外接球的體積為________.

【答案】;

【解析】

將正方形甲按圖中虛線剪開,以兩個正方形為底面,四個長方形為側(cè)面,焊接成一個底面邊長為2,高為1的正四棱柱.該四棱柱外接球的半徑.由此能求出該四棱柱外接球的體積.

解:將正方形按圖中虛線剪開,

以兩個正方形為底面,四個長方形為側(cè)面,

焊接成一個底面邊長為2,高為1的正四棱柱

底面為邊長為2的正方形,

該四棱柱外接球的半徑

該四棱柱外接球的體積為:

故答案為:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某保險公司為客戶定制了5個險種:甲,一年期短險;乙,兩全保險;丙,理財類保險;丁,定期壽險:戊,重大疾病保險,各種保險按相關(guān)約定進行參保與理賠.該保險公司對5個險種參保客戶進行抽樣調(diào)查,得出如下的統(tǒng)計圖例,以下四個選項錯誤的是(

A.54周歲以上參保人數(shù)最少B.1829周歲人群參?傎M用最少

C.丁險種更受參保人青睞D.30周歲以上的人群約占參保人群的80%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形,,點的中點,且,點上,且.

1)求證:平面

2)若平面平面,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若圓錐的內(nèi)切球(球面與圓錐的側(cè)面以及底面都相切)的半徑為1,當該圓錐體積取最小值時,該圓錐體積與其內(nèi)切球體積比為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).設的交點為,當變化時,的軌跡為曲線

1)求的普通方程;

2)設為圓上任意一點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20202月,全國掀起了“停課不停學”的熱潮,各地教師通過網(wǎng)絡直播、微課推送等多種方式來指導學生線上學習.為了調(diào)查學生對網(wǎng)絡課程的熱愛程度,研究人員隨機調(diào)查了相同數(shù)量的男、女學生,發(fā)現(xiàn)有的男生喜歡網(wǎng)絡課程,有的女生不喜歡網(wǎng)絡課程,且有的把握但沒有的把握認為是否喜歡網(wǎng)絡課程與性別有關(guān),則被調(diào)查的男、女學生總數(shù)量可能為(

附:,其中.

k

A.130B.190C.240D.250

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾病.而今年出現(xiàn)的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現(xiàn)有份需檢驗血液.

1)假設這份需檢驗血液有且只有一份為陽性,從中依次不放回的抽取份血液,已知前兩次的血液均為陰性,求第次出現(xiàn)陽性血液的概率;

2)現(xiàn)在對份血液進行檢驗,假設每份血液的檢驗結(jié)果是陽性還是陰性都是獨立的,據(jù)統(tǒng)計每份血液是陽性結(jié)果的概率為,現(xiàn)在有以下兩種檢驗方式:方式一:逐份檢驗;方式二:混合檢驗,將份血液分別取樣混合在一起檢驗(假設血液混合后不影響血液的檢驗).若檢驗結(jié)果為陰性,則這份血液全為陰性,檢驗結(jié)束;如果檢驗結(jié)果為陽性,則這份血液中有為陽性的血液,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗.從檢驗的次數(shù)分析,哪一種檢驗方式更好一些,并說明理由.參考數(shù)據(jù):.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M,直線l)過定點N,點P是圓M上的任意一點,線段的垂直平分線和相交于點Q,當點P在圓M上運動時,點Q的軌跡為曲線C.

1)求曲線C的方程;

2)直線lCA,B兩點,D,B關(guān)于x軸對稱,直線x軸交于點E,且點D為線段的中點,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求曲線在點處的切線方程;

2)若函數(shù)有兩個極值點,,且不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案