【題目】已知圓M,直線l)過定點(diǎn)N,點(diǎn)P是圓M上的任意一點(diǎn),線段的垂直平分線和相交于點(diǎn)Q,當(dāng)點(diǎn)P在圓M上運(yùn)動(dòng)時(shí),點(diǎn)Q的軌跡為曲線C.

1)求曲線C的方程;

2)直線lCA,B兩點(diǎn),D,B關(guān)于x軸對(duì)稱,直線x軸交于點(diǎn)E,且點(diǎn)D為線段的中點(diǎn),求直線l的方程.

【答案】1;(2.

【解析】

1)由題意得,根據(jù)橢圓定義知?jiǎng)狱c(diǎn)Q的軌跡是橢圓,求出后可得橢圓方程;

2)聯(lián)立直線與橢圓,根據(jù)韋達(dá)定理以及中點(diǎn)公式可解得,從而可得直線l的方程.

1)直線l)過定點(diǎn)

由條件可得,又

所以 ,且,

根據(jù)橢圓定義得動(dòng)點(diǎn)Q的軌跡是以為焦點(diǎn)的橢圓

,,,

所以,

C的方程為:.

2)直線l,代入,消去并整理得

設(shè)、,

,①.

因?yàn)?/span>D的中點(diǎn),且

因?yàn)?/span>,即

所以,所以

①③聯(lián)立得,,代入②得

,

解得,所以,

所以直線l的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)中有許多形狀優(yōu)美、寓意美好的曲線,如下圖就是在平面直角坐標(biāo)系的“心形曲線”,又名RC心形線.如果以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,其RC心形線的極坐標(biāo)方程為.

1)求RC心形線的直角坐標(biāo)方程;

2)已知與直線為參數(shù)),若直線RC心形線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一塊邊長(zhǎng)為4的正方形鋁板(如圖),請(qǐng)?jiān)O(shè)計(jì)一種裁剪方法,用虛線標(biāo)示在答題卡本題圖中,通過該方案裁剪,可焊接做成一個(gè)密封的正四棱柱(底面是正方形且側(cè)棱垂于底面的四棱柱),且該四棱柱的全面積等于正方形鋁板的面積(要求裁剪的塊數(shù)盡可能少,不計(jì)焊接縫的面積),則該四棱柱外接球的體積為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),若上有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)函數(shù),討論的單調(diào)性;

2)函數(shù))的圖象在點(diǎn)處的切線為,證明:有且只有兩個(gè)點(diǎn)使得直線與函數(shù)的圖象也相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中, 邊上,且,將沿折到的位置,使得平面平面.

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】受疫情影響,某電器廠生產(chǎn)的空調(diào)滯銷,經(jīng)研究決定,在已有線下門店銷售的基礎(chǔ)上,成立線上營(yíng)銷團(tuán)隊(duì),大力發(fā)展“網(wǎng)紅”經(jīng)濟(jì),當(dāng)線下銷售人數(shù)為(人)時(shí),每天線下銷售空調(diào)可達(dá)(百臺(tái)),當(dāng)線上銷售人數(shù)為(人)()時(shí),每天線上銷量達(dá)到(百臺(tái)).

1)解不等式:,并解釋其實(shí)際意義;

2)若該工廠大有銷售人員)人,按市場(chǎng)需求,安排人員進(jìn)行線上或線下銷售,問該工廠每天銷售空調(diào)總臺(tái)數(shù)的最大值是多少百臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為:,(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為

1)求曲線和直線l的直角坐標(biāo)方程;

2)若點(diǎn)在曲線上,且點(diǎn)到直線l的距離最小,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

求不等式的解集;

若函數(shù)的最小值為,整數(shù)、滿足,求證.

查看答案和解析>>

同步練習(xí)冊(cè)答案