【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)中,曲線的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(,參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系.
(1)若,求直線以及曲線的極坐標(biāo)方程;
(2)已知,,,均在曲線上,且四邊形為矩形為矩形,求其周長的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)的離心率e= ,并且經(jīng)過定點(diǎn)P( , ). (Ⅰ)求橢圓E的方程;
(Ⅱ)問是否存在直線y=﹣x+m,使直線與橢圓交于A、B兩點(diǎn),滿足 = ,若存在求m值,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x+有如下性質(zhì):如果常數(shù)t>0,那么該函數(shù)在(0,]上是減函數(shù),在[,+∞)上是增函數(shù).
(1)已知(x)=,x∈[0,1]利用上述性質(zhì),求函數(shù)f(x)的值域;
(2)對(duì)于(1)中的函數(shù)f(x)和函數(shù)g(x)=-x+2a.若對(duì)任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求實(shí)數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四個(gè)不同的盒子里面放了個(gè)不同的水果,分別是桔子、香蕉、葡萄、以及西瓜,讓小明、小紅、小張、小李四個(gè)人進(jìn)行猜測(cè)
小明說:第個(gè)盒子里面放的是香蕉,第個(gè)盒子里面放的是葡萄;
小紅說:第個(gè)盒子里面放的是香蕉,第個(gè)盒子里面放的是西瓜;
小張說:第個(gè)盒子里面敬的是香蕉,第個(gè)盒子里面放的是葡萄;
小李說:第個(gè)盒子里面放的是桔子,第個(gè)盒子里面放的是葡萄;
如果說:“小明、小紅、小張、小李,都只說對(duì)了一半。”則可以推測(cè),第個(gè)盒子里裝的是( )
A. 西瓜 B. 香蕉 C. 葡萄 D. 桔子
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓以原點(diǎn)為圓心,且圓與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)若直線:與圓交于、兩點(diǎn),分別過、兩點(diǎn)作直線的垂線,交軸于、兩點(diǎn),求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是正方形,底面ABCD,點(diǎn)E在棱PB上.
求證:平面平面PDB;
當(dāng),且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過直線2x+y-5=0與x-2y=0的交點(diǎn)P.
(1)若直線l平行于直線l1:4x-y+1=0,求l的方程;
(2)若直線l垂直于直線l1:4x-y+1=0,求l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com