3.有4位同學(xué)和3位老師站成一排拍照,任意兩位老師不站在一起的不同排法種數(shù)為1440種.

分析 本題要求任何兩位老師不站在一起,可以采用插空法,先排4位學(xué)生,再使三位教師在學(xué)生形成的五個(gè)空上排列,最后根據(jù)分步計(jì)數(shù)原理得到結(jié)果.

解答 解:∵要求任何兩位老師不站在一起,
∴可以采用插空法,
先排4位學(xué)生,有A44種結(jié)果,
再使三位教師在學(xué)生形成的五個(gè)空上排列,有A53種結(jié)果,
根據(jù)分步計(jì)數(shù)原理知共有A44A53=1440種結(jié)果,
故答案為:1440

點(diǎn)評(píng) 站隊(duì)問題是排列組合中的典型問題,解題時(shí)要先排限制條件多的元素,把限制條件比較多的元素排列后,再排沒有限制條件的元素,最后要用分步計(jì)數(shù)原理得到結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線x2-3y2=-1的兩條漸近線的夾角為(  )
A.$\frac{π}{6}$B.$\frac{π}{6}$或$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某中學(xué)學(xué)生社團(tuán)活動(dòng)迅猛發(fā)展,高一新生中的五名同學(xué)打算參加“清凈了文學(xué)社”、“科技社”、“十年國學(xué)社”、“圍棋苑”四個(gè)社團(tuán).若每個(gè)社團(tuán)至少有一名同學(xué)參加,每名同學(xué)至少參加一個(gè)社團(tuán)且只能參加一個(gè)社團(tuán),且同學(xué)甲不參加“圍棋苑”,則不同的參加方法的種數(shù)為( 。
A.72B.108C.180D.216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖所示,在棱長(zhǎng)為2的正方體ABCD-A′B′C′D′中,求:
(1)二面角B-A′D′-D的平面角的正切值;
(2)三棱錐A′-BB′D′的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在所有的三位數(shù)中,百位數(shù)字,十位數(shù)字和個(gè)位數(shù)字依次增大的有84個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)F(x)=$\frac{{3}^{x}cos4x}{{9}^{x}-1}$f(x)(x≠0)是偶函數(shù),且f(x)不恒等于零,則f(x)( 。
A.是奇函數(shù)B.是偶函數(shù)
C.既是奇函數(shù),又是偶函數(shù)D.是非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在平面上,過點(diǎn)P作直線l的垂線所得的垂足稱為點(diǎn)P在直線l上的投影,由區(qū)域$\left\{\begin{array}{l}{x-2≤0}\\{x+y≥0}\\{x-3y+4≥0}\end{array}\right.$中的點(diǎn)在直線x+y-2=0上的投影構(gòu)成的線段記為AB,則|AB|=( 。
A.2$\sqrt{2}$B.4C.3$\sqrt{2}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.180°+k•360°(k∈Z)表示( 。
A.第二象限角B.第三象限角C.第四象限角D.界限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.棱臺(tái)上、下底面面積比為1:9,則棱臺(tái)的中截面分棱臺(tái)成兩部分的體積之比是$\frac{7}{19}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案