分析 若y=f(x)的圖象與y=g(x)的圖象無公共點(diǎn),則等價(jià)為f(x)-g(x)>0或f(x)-g(x)<0恒成立,利用參數(shù)分離法,轉(zhuǎn)化為求函數(shù)的最值,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)進(jìn)行求解即可.
解答 解:若y=f(x)的圖象與y=g(x)的圖象無公共點(diǎn),
則等價(jià)為f(x)-g(x)>0或f(x)-g(x)<0恒成立,
即x2-ax-b-aln(x-1)>0或x2-ax-b-aln(x-1)<0恒成立,
即x2-ax-aln(x-1)>b或x2-ax-aln(x-1)<b恒成立,
設(shè)h(x)=x2-ax-aln(x-1),則函數(shù)h(x)的定義域?yàn)椋?,+∞),
函數(shù)的導(dǎo)數(shù)h′(x)=2x-a-$\frac{a}{x-1}$=$\frac{2x(x-\frac{a+2}{2})}{x-1}$,
當(dāng)a≥1時(shí),$\frac{a+2}{2}$≥$\frac{3}{2}$,
故x∈(1,$\frac{a+2}{2}$)時(shí),h′(x)<0,
x∈($\frac{a+2}{2}$,+∞)時(shí),h′(x)>0,
即當(dāng)x=$\frac{a+2}{2}$時(shí),函數(shù)h(x)取得極小值同時(shí)也是最小值h($\frac{a+2}{2}$)=$\frac{{a}^{2}}{4}$,
設(shè)G(a)=h($\frac{a+2}{2}$)=-$\frac{{a}^{2}}{4}$,
則G(a)在[1,+∞)上為減函數(shù),
G(a)的最大值為G(1)=$\frac{3}{4}$,
故h(x)的最小值h($\frac{a+2}{2}$)≤$\frac{3}{4}$,
則若x2-ax-aln(x-1)>b,
則b<$\frac{3}{4}$+ln2,
若x2-ax-aln(x-1)<b恒成立,則不成立,
綜上b<$\frac{3}{4}$+ln2.
故答案為:(-∞,$\frac{3}{4}$+ln2).
點(diǎn)評(píng) 本題主要考查函數(shù)的圖象相交問題,構(gòu)造函數(shù),利用參數(shù)分離法,結(jié)合導(dǎo)數(shù)研究函數(shù)的最值是解決本題的關(guān)鍵.綜合性較強(qiáng),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{2}+1$ | C. | $\sqrt{2}-1$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | arctan(-6) | B. | arctan(-$\frac{1}{6}$) | C. | π-arctan6 | D. | π-arctan$\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com