10.已知函數(shù)f(x)=x2-ax,g(x)=b+aln(x-1),存在實(shí)數(shù) a(a≥1),使y=f(x)的圖象與y=g(x)的圖象無公共點(diǎn),則實(shí)數(shù)b的取值范圍為(-∞,$\frac{3}{4}$+ln2).

分析 若y=f(x)的圖象與y=g(x)的圖象無公共點(diǎn),則等價(jià)為f(x)-g(x)>0或f(x)-g(x)<0恒成立,利用參數(shù)分離法,轉(zhuǎn)化為求函數(shù)的最值,構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)進(jìn)行求解即可.

解答 解:若y=f(x)的圖象與y=g(x)的圖象無公共點(diǎn),
則等價(jià)為f(x)-g(x)>0或f(x)-g(x)<0恒成立,
即x2-ax-b-aln(x-1)>0或x2-ax-b-aln(x-1)<0恒成立,
即x2-ax-aln(x-1)>b或x2-ax-aln(x-1)<b恒成立,
設(shè)h(x)=x2-ax-aln(x-1),則函數(shù)h(x)的定義域?yàn)椋?,+∞),
函數(shù)的導(dǎo)數(shù)h′(x)=2x-a-$\frac{a}{x-1}$=$\frac{2x(x-\frac{a+2}{2})}{x-1}$,
當(dāng)a≥1時(shí),$\frac{a+2}{2}$≥$\frac{3}{2}$,
故x∈(1,$\frac{a+2}{2}$)時(shí),h′(x)<0,
x∈($\frac{a+2}{2}$,+∞)時(shí),h′(x)>0,
即當(dāng)x=$\frac{a+2}{2}$時(shí),函數(shù)h(x)取得極小值同時(shí)也是最小值h($\frac{a+2}{2}$)=$\frac{{a}^{2}}{4}$,
設(shè)G(a)=h($\frac{a+2}{2}$)=-$\frac{{a}^{2}}{4}$,
則G(a)在[1,+∞)上為減函數(shù),
G(a)的最大值為G(1)=$\frac{3}{4}$,
故h(x)的最小值h($\frac{a+2}{2}$)≤$\frac{3}{4}$,
則若x2-ax-aln(x-1)>b,
則b<$\frac{3}{4}$+ln2,
若x2-ax-aln(x-1)<b恒成立,則不成立,
綜上b<$\frac{3}{4}$+ln2.
故答案為:(-∞,$\frac{3}{4}$+ln2).

點(diǎn)評(píng) 本題主要考查函數(shù)的圖象相交問題,構(gòu)造函數(shù),利用參數(shù)分離法,結(jié)合導(dǎo)數(shù)研究函數(shù)的最值是解決本題的關(guān)鍵.綜合性較強(qiáng),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.給定兩個(gè)命題:p:對(duì)任意實(shí)數(shù)x,都有ax2+ax+1>0恒成立,q:函數(shù)y=3x-a在x∈[0,2]上有零點(diǎn),如果(¬p)∧q為假命題,¬q為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.極坐標(biāo)系中,圓ρ=1上的點(diǎn)到直線ρcosθ+ρsinθ=2的距離最大值為( 。
A.$\sqrt{2}$B.$\sqrt{2}+1$C.$\sqrt{2}-1$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.點(diǎn)(2,-2)的極坐標(biāo)為$(2\sqrt{2},\frac{7π}{4})$(ρ>0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2log3(x-a)-1og3(x+3).
(1)當(dāng)a=3時(shí),解不等式f(x)≥0;
(2)當(dāng)x∈(-3,+∞)時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若P(x,y)為圓x2+y2-6x-4y+12=0上的點(diǎn),則$\frac{y}{x}$的最大值為$\frac{3+\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)曲線x2+y2-2x+4y-4=0關(guān)于直線x-2ay+11=0對(duì)稱,則直線x-2ay+11=0的傾斜角為( 。
A.arctan(-6)B.arctan(-$\frac{1}{6}$)C.π-arctan6D.π-arctan$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,圓C1:(x-3)2+y2=9,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C2的圓心的極坐標(biāo)為($\sqrt{2}$,$\frac{π}{4}}$),半徑為1.
(1)求圓C1的極坐標(biāo)方程;
(2)設(shè)圓C1與圓C2交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.我們知道,任意兩個(gè)連續(xù)的正整數(shù)的積一定能被2整除,任意三個(gè)連續(xù)的正整數(shù)的積一定能被6整除,那么,任意五個(gè)連續(xù)的正整數(shù)的積一定能被哪一個(gè)正整數(shù)整除呢?以此為依據(jù)你認(rèn)為:當(dāng)n為大于2的整數(shù)時(shí),n5-5n3+4n能否被120整除?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案