15.若P(x,y)為圓x2+y2-6x-4y+12=0上的點(diǎn),則$\frac{y}{x}$的最大值為$\frac{3+\sqrt{3}}{4}$.

分析 化圓的一般方程為標(biāo)準(zhǔn)方程,作出圖形,利用$\frac{y}{x}$的幾何意義,即圓上的點(diǎn)與坐標(biāo)原點(diǎn)連線的斜率,結(jié)合點(diǎn)到直線的距離公式求解.

解答 解:由圓x2+y2-6x-4y+12=0,得(x-3)2+(y-2)2=1.
畫出圖形如圖,

$\frac{y}{x}$的幾何意義為圓上的點(diǎn)與坐標(biāo)原點(diǎn)連線的斜率.
設(shè)過原點(diǎn)與圓x2+y2-6x-4y+12=0相切的直線方程為y=kx.
由$\frac{|3k-2|}{\sqrt{{k}^{2}+1}}=1$,解得:k=$\frac{3-\sqrt{3}}{4}$或k=$\frac{3+\sqrt{3}}{4}$.
∴$\frac{y}{x}$的最大值為$\frac{3+\sqrt{3}}{4}$.
故答案為:$\frac{3+\sqrt{3}}{4}$.

點(diǎn)評 本題考查直線與圓的位置關(guān)系,考查數(shù)學(xué)轉(zhuǎn)化思想方法和數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,已知ABC-A1B1C1是所有棱長均相等的正三棱柱,點(diǎn)E是棱AB的中點(diǎn),點(diǎn)F是棱B1C1的中點(diǎn),點(diǎn)M是棱AA1上的動點(diǎn),則二面角B1-EM-F的正切值不可能等于( 。
A.$\frac{\sqrt{15}}{6}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{5}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a>0,a≠1,比較|loga(1-x)|與|loga(1+x)|的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=loga(ax-1)(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的單調(diào)性;
(3)若f(x)>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=x2-ax,g(x)=b+aln(x-1),存在實(shí)數(shù) a(a≥1),使y=f(x)的圖象與y=g(x)的圖象無公共點(diǎn),則實(shí)數(shù)b的取值范圍為(-∞,$\frac{3}{4}$+ln2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若圓x2+y2=4上有四個點(diǎn)到直線8x-6y+c=0的距離為1,則實(shí)數(shù)c的取值范圍是-10<c<10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系中,已知曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l過極坐標(biāo)系內(nèi)的兩點(diǎn)A(2$\sqrt{2}$,$\frac{π}{4}$)和B(3,$\frac{π}{2}$).
(1)寫出曲線C和直線l的直角坐標(biāo)系中的普通方程;
(2)若P是曲線C上任意一點(diǎn),求△ABP面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在單位正方體ABCD-A1B1C1D1中,O是B1D1的中點(diǎn),如圖建立空間直角坐標(biāo)系.
(1)求證:B1C∥平面ODC1;
(2)求異面直線B1C與OD夾角的余弦值;
(3)求直線B1C到平面ODC1的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,BD為⊙O的直徑,AB=AC,AD交BC于E,AE=2,ED=4.
(I)求證:△ABE∽△ADB,并求AB的長;
(II)延長DB到F,使BF=BO,連接FA,那么直線FA與⊙O相切嗎?為什么?

查看答案和解析>>

同步練習(xí)冊答案