8.在△ABC中,C=90°,且CA=CB=6,點(diǎn)M滿足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,則$\overrightarrow{CM}$•$\overrightarrow{CB}$=( 。
A.2B.12C.4D.6

分析 由向量加法的三角形法則得$\overrightarrow{CM}$=$\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$,然后利用向量數(shù)量積運(yùn)算性質(zhì)可求答案.

解答 解:$\overrightarrow{CM}$=$\overrightarrow{CB}$+$\frac{2}{3}$$\overrightarrow{BA}$=$\overrightarrow{CB}$+$\frac{2}{3}$($\overrightarrow{CA}$-$\overrightarrow{CB}$)=$\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$,
∴$\overrightarrow{CM}$•$\overrightarrow{CB}$=($\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$)•$\overrightarrow{CB}$=+$\frac{2}{3}$•$\overrightarrow{CA}$•$\overrightarrow{CB}$+$\frac{1}{3}$${\overrightarrow{CB}}^{2}$=$\frac{1}{3}$×62=12,
故選:B

點(diǎn)評 本題考查平面向量的運(yùn)算性質(zhì)、向量加法的三角形法則,屬基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)θ為第二象限的角,sinθ=$\frac{3}{5}$,則sin2θ=( 。
A.$\frac{7}{25}$B.$\frac{24}{25}$C.-$\frac{7}{25}$D.-$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-mx+m,m∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)≤0在x∈(0,+∞)上恒成立,求實(shí)數(shù)m的值;
(3)在(2)的條件下,對任意的0<a<b,求證:$\frac{f(b)-f(a)}{b-a}$<$\frac{1}{a}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某城市缺水問題比較突出,為了制定節(jié)水管理辦法,對全市居民某年的月均用水量進(jìn)行了抽樣調(diào)查,其中4位居民的月均用水量分別為xi(i=1,2,3,4)(單位:立方米).根據(jù)如圖所示的程序框圖,若知x1,x2,x3,x4分別為1,1.5,1.5,3,則輸出的結(jié)果S為$\frac{7}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若對任意的x∈R,不等式|x|≥(a-1)x恒成立,則實(shí)數(shù)a的取值范圍是[0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,
(1)若$\overrightarrow{a}$、$\overrightarrow$的夾角為60°,求|$\overrightarrow{a}$+$\overrightarrow$|;
(2)若$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow{a}$垂直,求$\overrightarrow{a}$與$\overrightarrow$的夾角.
(3)若$\overrightarrow{a}$∥$\overrightarrow$,求$\overrightarrow{a}$•$\overrightarrow$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)y=$\frac{{{x^2}+8}}{x-1}$(x>1)的最小值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若函數(shù)f(x)=ax在區(qū)間[0,2]上的最大值是最小值的2倍,則a的值為( 。
A.2B.$\frac{{\sqrt{2}}}{2}$C.$\frac{1}{2}$或$\sqrt{2}$D.$\frac{{\sqrt{2}}}{2}$或$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.將函數(shù)y=3sin2x的圖象向左平移$\frac{π}{6}$個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式是y=3sin(2x+$\frac{π}{3}$)+1.

查看答案和解析>>

同步練習(xí)冊答案