【題目】已知橢圓 的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)相同, 為橢圓的左、右焦點(diǎn) 為橢圓上任意一點(diǎn) 面積的最大值為1

(1)求橢圓的方程;

(2)直線交橢圓兩點(diǎn).若直線的斜率分別為,.求證:直線過定點(diǎn)并求出該定點(diǎn)的坐標(biāo)

【答案】(1);(2

【解析】試題分析:1)由拋物線的焦點(diǎn)為可以得到橢圓的半焦距,而的面積的最大值為,利用算出,從而,橢圓方程為(2)先設(shè)出和直線的方程 ,把轉(zhuǎn)化為,故聯(lián)立方程組消去再利用韋達(dá)定理把這個(gè)關(guān)于的關(guān)系式化簡為,所以直線 恒過定點(diǎn),該定點(diǎn)坐標(biāo)為

解析:

(1)由拋物線的方程得其焦點(diǎn)為所以橢圓中,當(dāng)點(diǎn)為橢圓的短軸端點(diǎn)時(shí), 面積最大,此時(shí),所以,所以橢圓的方程為

(2)聯(lián)立 ,,

設(shè),又,整理得,即

,化簡得,所以直線的方程為,因此直線 恒過定點(diǎn),該定點(diǎn)坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)離心率為 的橢圓E: + =1(a>b>0)的左、右焦點(diǎn)為F1 , F2 , 點(diǎn)P是E上一點(diǎn),PF1⊥PF2 , △PF1F2內(nèi)切圓的半徑為 ﹣1.
(1)求E的方程;
(2)矩形ABCD的兩頂點(diǎn)C、D在直線y=x+2,A、B在橢圓E上,若矩形ABCD的周長為 ,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于 兩點(diǎn)(, 不是左右頂點(diǎn)),且以為直徑的圓過橢圓的右頂點(diǎn).求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】全國大學(xué)生機(jī)器人大賽是由共青團(tuán)中央,全國學(xué)聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機(jī)器人項(xiàng)目,是全球獨(dú)創(chuàng)的機(jī)器人競技平臺.全國大學(xué)生機(jī)器人大賽比拼的是參賽選手們的能力,堅(jiān)持和態(tài)度,展現(xiàn)的是個(gè)人實(shí)力以及整個(gè)團(tuán)隊(duì)的力量.2015賽季共吸引全國240余支機(jī)器人戰(zhàn)隊(duì)踴躍報(bào)名,這些參賽戰(zhàn)隊(duì)來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學(xué),清華大學(xué),上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴(yán)格篩選,最終由111支機(jī)器人戰(zhàn)隊(duì)參與到2015年全國大學(xué)生機(jī)器人大賽的激烈角逐之中,某大學(xué)共有“機(jī)器人”興趣團(tuán)隊(duì)1000個(gè),大一、大二、大三、大四分別有100,200,300,400個(gè),為挑選優(yōu)秀團(tuán)隊(duì),現(xiàn)用分層抽樣的方法,從以上團(tuán)隊(duì)中抽取20個(gè)團(tuán)隊(duì).

(1)應(yīng)從大三抽取多少個(gè)團(tuán)隊(duì)?

(2)將20個(gè)團(tuán)隊(duì)分為甲、乙兩組,每組10個(gè)團(tuán)隊(duì),進(jìn)行理論和實(shí)踐操作考試(共150分),甲、乙兩組的分?jǐn)?shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強(qiáng)化訓(xùn)練,備戰(zhàn)機(jī)器人大賽.從統(tǒng)計(jì)學(xué)數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐ABCD中,AB⊥平面BCDCD⊥BD .

1)求證:CD⊥平面ABD;

2)若ABBDCD1,MAD中點(diǎn),求三棱錐AMBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線x2=ay(a>0)的準(zhǔn)線l與y軸交于點(diǎn)P,若l繞點(diǎn)P以每秒 弧度的角速度按逆時(shí)針方向旋轉(zhuǎn)t秒鐘后,恰與拋物線第一次相切,則t等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)M到坐標(biāo)原點(diǎn)的距離和它到直線l:x=﹣m(m>0)的距離之比是一個(gè)常數(shù)
(Ⅰ)求點(diǎn)M的軌跡;
(Ⅱ)若m=1時(shí)得到的曲線是C,將曲線C向左平移一個(gè)單位長度后得到曲線E,過點(diǎn)P(﹣2,0)的直線l1與曲線E交于不同的兩點(diǎn)A(x1 , y1),B(x2 , y2),過F(1,0)的直線AF、BF分別交曲線E于點(diǎn)D、Q,設(shè) , ,α、β∈R,求α+β的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)在區(qū)間上的圖像如圖所示,將該函數(shù)圖像上各點(diǎn)的橫坐標(biāo)縮短到原來的一半(縱坐標(biāo)不變,再向右平移個(gè)單位長度后,所得到的圖像關(guān)于直線對稱,則的最小值為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

2)過橢圓的上頂點(diǎn)作直線交拋物線兩點(diǎn), 為原點(diǎn).

①求證: ;

②設(shè)分別與橢圓相交于、兩點(diǎn),過原點(diǎn)作直線的垂線,垂足為,證明: 為定值.

查看答案和解析>>

同步練習(xí)冊答案