【題目】已知cosx=﹣ ,x∈(0,π)
(1)求cos(x﹣ )的值;
(2)求sin(2x+ )的值.
【答案】
(1)解:∵cosx=﹣ ,x∈(0,π)
∴sinx= = ,
∴cos(x﹣ )= ×(﹣ )+ × = .
(2)解:由(1)可得:sin2x=2sinxcosx=2× =﹣ ,
cos2x=2cos2x﹣1=2× ﹣1=﹣ ,
∴sin(2x+ )= sin2x+ cos2x= (﹣ )+ ×(﹣ )=﹣ .
【解析】(1)由已知利用同角三角函數(shù)基本關(guān)系式可求sinx的值,利用兩角差的余弦函數(shù)公式及特殊角的三角函數(shù)值即可計(jì)算得解cos(x﹣ )的值.(2)由(1)利用二倍角公式可得sin2x,cos2x的值,利用兩角和的正弦函數(shù)公式,特殊角的三角函數(shù)值即可計(jì)算得解sin(2x+ )的值.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用兩角和與差的余弦公式和兩角和與差的正弦公式的相關(guān)知識可以得到問題的答案,需要掌握兩角和與差的余弦公式:;兩角和與差的正弦公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓 ,圓 .
(1)求兩圓公共弦所在直線的方程;
(2)直線ι過點(diǎn)(4,﹣4)與圓C1相交于A,B兩點(diǎn),且 ,求直線ι的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn= an+n﹣3.
(1)求證:數(shù)列{an﹣1}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)令cn=log3(a1﹣1)+log3(a2﹣1)+…+log3(an﹣1),對任意n∈N*, + +…+ <k都成立,求k的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義平面向量之間的一種運(yùn)算“⊙”如下:對任意的 ,令 ,下面說法錯(cuò)誤的是( )
A.若 與 共線,則 ⊙ =0
B.⊙ = ⊙
C.對任意的λ∈R,有 ⊙ = ⊙ )
D.( ⊙ )2+( )2=| |2| |2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點(diǎn),則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個(gè)、兩個(gè)或三個(gè)不同的公共點(diǎn),則稱兩條平行線和圓“相切”.已知直線l1:2x﹣y+a=0,l2:2x﹣y+a2+1=0和圓:x2+y2+2x﹣4=0相切,則a的取值范圍是( )
A.a>7或a<﹣3
B.
C.﹣3≤a≤一 或 ≤a≤7
D.a≥7或a≤﹣3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(是常數(shù)且),對于下列命題:
①函數(shù)的最小值是;
②函數(shù)在上是單調(diào)函數(shù);
③若在上恒成立,則的取值范圍是;
④對任意的且,恒有
其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以(a,1)為圓心,且與兩直線x﹣y+1=0及x﹣y﹣3=0同時(shí)相切的圓的標(biāo)準(zhǔn)方程為( )
A.x2+(y﹣1)2=2
B.(x﹣2)2+(y﹣1)2=2
C.x2+(y﹣1)2=8
D.(x﹣2)2+(y﹣1)2=8
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com