11.函數(shù)$f(x)=\sqrt{\frac{1}{4}{x^2}-1}+{x^2}-9$的零點(diǎn)個(gè)數(shù)為(  )
A.0B.2C.4D.6

分析 設(shè)g(x)=$\sqrt{\frac{1}{4}{x}^{2}-1}$,h(x)=9-x2,函數(shù)圖象如圖所示,圖象有兩個(gè)交點(diǎn),即可得出結(jié)論.

解答 解:設(shè)g(x)=$\sqrt{\frac{1}{4}{x}^{2}-1}$,h(x)=9-x2,
函數(shù)圖象如圖所示,圖象有兩個(gè)交點(diǎn),
所以函數(shù)$f(x)=\sqrt{\frac{1}{4}{x^2}-1}+{x^2}-9$的零點(diǎn)個(gè)數(shù)為2,
故選B.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),考查數(shù)形結(jié)合的數(shù)學(xué)思想,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在△ABC,B=$\frac{π}{3}$,BC=2,點(diǎn)D在邊AB上,AD=DC,DE⊥AC,E為垂足,ED=$\frac{\sqrt{6}}{2}$,則角A=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=log2x+x的零點(diǎn)所在的一個(gè)區(qū)間是( 。
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)是(1,-1),則$\overline{z}$=1+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.四名教師被分到甲、乙、丙三所學(xué)校參加工作,每所學(xué)校至少一名教師.
(Ⅰ)求A、B兩名教師被同時(shí)分配到甲學(xué)校的概率;
(Ⅱ)求A、B兩名教師不在同一學(xué)校的概率;
(Ⅲ)設(shè)隨機(jī)變量ξ為這四名教師中分配到甲學(xué)校的人數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-(a+1)x+alnx,\;a∈R$.
(1)若a=-2,求曲線y=f(x)的與直線y=2x+1平行的切線方程;
(2)若a>0,求函數(shù)f(x)在區(qū)間[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某學(xué)校想要調(diào)查全校同學(xué)是否知道迄今為止獲得過(guò)諾貝爾物理獎(jiǎng)的6位華人的姓名,為此出了一份考卷,該卷共有6個(gè)單選題,每題答對(duì)得20分,答錯(cuò)、不答得零分,滿分120分,閱卷完畢后,校方公布每題答對(duì)率如下:
 題號(hào) 一 二三  四六 
 答對(duì)率 70% 60% 50% 40% 30% 10%
則此次調(diào)查全體同學(xué)的平均分?jǐn)?shù)是52分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.${log_2}\frac{1}{4}+{log_2}32$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦點(diǎn)分別關(guān)于兩條漸近線的對(duì)稱點(diǎn)重合,則雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案