A. | $\frac{π}{12}$ | B. | $\frac{5π}{12}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{4}$ |
分析 利用函數(shù)y=Asin(ωx+φ)的圖象的對稱性,得出結(jié)論.
解答 解:∵函數(shù)$f(x)=sin(ωx+\frac{π}{6})(ω>0)$圖象的兩條相鄰的對稱軸之間的距離為$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{2}$,∴ω=2,
∴f(x)=sin(2x+$\frac{π}{6}$).
令2x+$\frac{π}{6}$=kπ,k∈Z,求得x=$\frac{1}{2}$kπ-$\frac{π}{12}$,故該函數(shù)的圖象的對稱中心為( $\frac{1}{2}$kπ-$\frac{π}{12}$,0 ),k∈Z.
根據(jù)該函數(shù)圖象關(guān)于點(diǎn)(x0,0)成中心對稱,結(jié)合${x_0}∈[0,\frac{π}{2}]$,則x0=$\frac{5π}{12}$,
故選:B.
點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象的對稱性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1.5 | B. | 2 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 7 | C. | $\frac{7}{5}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com