8.在數(shù)1和e2之間插入n個(gè)實(shí)數(shù)x1,x2,x3,…,xn,使得這n+2個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這插入的n個(gè)數(shù)的乘積記作Tn,再令an=lnTn,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{{a_n}•({a_n}+2)}}$,求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)若對(duì)任意n∈N*,都有Sn$<\frac{m}{60}$成立,求實(shí)數(shù)m的取值范圍.

分析 (1)由1,x1,x2,•…•xn,e2構(gòu)成等比數(shù)列,Tn=x1x2•…•xn=en,進(jìn)而得出.
(2)利用“裂項(xiàng)求和”方法即可得出.
(3)利用數(shù)列的單調(diào)性即可得出.

解答 解:(1)∵1,x1,x2,•…•xn,e2構(gòu)成等比數(shù)列,
又Tn=x1x2•…•xn=en,
∴an=lnTn=lnen=n.
(2)∴${S_n}={b_1}+{b_2}+…+{b_n}=\frac{1}{2}[{({1-\frac{1}{3}})+({\frac{1}{2}-\frac{1}{4}})+…+({\frac{1}{n}-\frac{1}{n+2}})}]$
=$\frac{1}{2}({1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}})=\frac{1}{2}({\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}})=\frac{1}{2}[{\frac{3}{2}-\frac{2n+3}{{({n+1})({n+2})}}}]$.
(3)∵Sn=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$$<\frac{3}{4}$,
∴對(duì)任意n∈N*,都有Sn$<\frac{m}{60}$成立$?\frac{m}{60}≥\frac{3}{4}?m≥45$.
故m∈[45,+∞).

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、“裂項(xiàng)求和”方法、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某商店將進(jìn)價(jià)為40元的商品按50元一件銷售,一個(gè)月恰好賣500件,而價(jià)格每提高1元,就會(huì)少賣10個(gè),商店為使該商品利潤最大,應(yīng)將每件商品定價(jià)為( 。
A.50元B.60元C.70元D.100元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若P(-4,3)是角α終邊上一點(diǎn),則$\frac{cos(α-3π)•sin(-α)}{si{n}^{2}(π-α)}$的值為( 。
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=$2{x^2}+\frac{1}{x}-x$,則f(x)=$\left\{{\begin{array}{l}{-2{x^2}+\frac{1}{x}-x}&{\;}&{x>0}\\ 0&{\;}&{x=0}\\{2{x^2}+\frac{1}{x}-x}&{\;}&{x<0}\end{array}}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.關(guān)于x的方程$\sqrt{1-{x}^{2}}$=kx+2有唯一實(shí)數(shù)解,則實(shí)數(shù)k的取值范圍是( 。
A.$\left\{{±\sqrt{3}}\right\}$B.(-∞,-2)∪(2,+∞)C.(-2,2)D.$({-∞,-2})∪\left\{{±\sqrt{3}}\right\}∪({2,+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)命題p:|2x-3|<1;命題q:lg2x-(2t+l)lgx+t(t+l)≤0,
(1)若命題q所表示不等式的解集為A={x|l0≤x≤100},求實(shí)數(shù)t的值;
(2)若?p是?q的必要不充分條件,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一條對(duì)稱軸為y軸,且θ∈(0,π).求θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.當(dāng)|$\overrightarrow a$|=|$\overrightarrow b$|≠0且$\overrightarrow a$、$\overrightarrow b$不共線時(shí),$\overrightarrow a$+$\overrightarrow b$與$\overrightarrow a$-$\overrightarrow b$的關(guān)系是( 。
A.平行B.垂直C.相交但不垂直D.相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的兩焦點(diǎn)F1,F(xiàn)2,過F2作垂直于x軸的直線與橢圓相交,交點(diǎn)分別是P1,P2,△F1P1P2為正三角形,橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{4}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案