已知拋物線的焦點為F,在第一象限中過拋物線上任意一點P的切線為,過P點作平行于軸的直線,過焦點F作平行于的直線交,若,則點P的坐標(biāo)為         .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:+=1(a>b>0),直線l:y=kx+m(k≠0,m≠0),直線l交橢圓C與P,Q兩點.
(Ⅰ)若k=1,橢圓C經(jīng)過點(,1),直線l經(jīng)過橢圓C的焦點和頂點,求橢圓方程;
(Ⅱ)若k=,b=1,且kOP,k,kOQ成等比數(shù)列,求三角形OPQ面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,、分別為橢圓的左、右兩個焦點,、為兩個頂點,已知頂點、兩點的距離之和為.
(1)求橢圓的方程;
(2)求橢圓上任意一點到右焦點的距離的最小值;
(3)作的平行線交橢圓、兩點,求弦長的最大值,并求取最大值時的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓的左,右焦點.
(1)若是橢圓在第一象限上一點,且,求點坐標(biāo);(5分)
(2)設(shè)過定點的直線與橢圓交于不同兩點,且為銳角(其中為原點),求直線的斜率的取值范圍.(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過點,且兩焦點與短軸的兩個端點的連線構(gòu)成一正方形.(12分)
(1)求橢圓的方程;
(2)直線與橢圓交于,兩點,若線段的垂直平分線經(jīng)過點,求
為原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

設(shè)中心在坐標(biāo)原點,以坐標(biāo)軸為對稱軸的圓錐曲線,離心率為,且過點(5,4),則其焦距為          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

是雙曲線右支上的兩點,中點到軸的距離為,則的最大值為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

直線y=x+b與曲線x=恰有一個交點,則實數(shù)的b的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點,焦點F1  F2在x軸上,離
心率為.過F1的直線l交C于A,B兩點,且△ABF2的周長為16,那么C的方程為
________________.

查看答案和解析>>

同步練習(xí)冊答案