分析 (1)利用三角形的內角和定理與三角函數(shù)的誘導公式以及同角的三角函數(shù)關系式,即可證明結論成立;
(2)利用三角函數(shù)的誘導公式先化簡,再根據(jù)角的取值范圍與三角函數(shù)值的符號,即可證明.
解答 解:(1)證明:△ABC中,A+B=π-C,
∴$\frac{A+B}{2}$=$\frac{π}{2}$-$\frac{C}{2}$,
∴cos$\frac{A+B}{2}$=cos($\frac{π}{2}$-$\frac{C}{2}$)=sin$\frac{C}{2}$
∴cos2$\frac{A+B}{2}$+cos2$\frac{C}{2}$=sin2$\frac{C}{2}$+cos2$\frac{C}{2}$=1;
(2)證明:△ABC中,cos($\frac{π}{2}$+A)sin($\frac{3}{2}$π+B)tan(C-π)<0,
∴-sinA•(-cosB)•tanC<0,
即sinAcosBtanC<0;
又A、B、C∈(0,π),
∴sinA>0,
∴cosBtanC<0,
即cosB<0或tanC<0,
∴B為鈍角或C為鈍角,
∴△ABC為鈍角三角形.
點評 本題考查了三角形的內角和定理與三角函數(shù)的誘導公式以及同角的三角函數(shù)關系式的應用問題,是基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1或-$\frac{25}{64}$ | B. | -$\frac{23}{38}$ | C. | -2 | D. | -3或-$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{3}$-1 | B. | 2$\sqrt{3}$+1 | C. | 4 | D. | $\sqrt{6}$+$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com