分析 an=3an-1-2,n∈N*,n≥2,變形為:an-1=3(an-1-1),a1≠1時(shí),數(shù)列{an}是等比數(shù)列,可得:an=1+3n(a0-1),若數(shù)列{an}的第n項(xiàng)開始滿足an>2014,于是1+3n(a0-1)>2014,解出即可得出.
解答 解:an=3an-1-2,n∈N*,n≥2,
變形為:an-1=3(an-1-1),
∴a1=1時(shí),an=1,舍去.
a1≠1時(shí),數(shù)列{an}是等比數(shù)列,首項(xiàng)為a1-1,公比為3.
∴an-1=(a1-1)×3n-1,取a1=3a0-2,
∴an=1+3n(a0-1),
若數(shù)列{an}的第n項(xiàng)開始滿足an>2014,
則1+3n(a0-1)>2014,
∴a0>1+$\frac{2013}{{3}^{n}}$
∴a0的取值范圍是$(1+\frac{2013}{{3}^{n}},+∞)$.
故答案為:$(1+\frac{2013}{{3}^{n}},+∞)$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項(xiàng)公式、不等式的解法,考查了分類討論方法、推理能力與計(jì)算能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com