16.在集合P={m|關(guān)于x的方程x2+mx-$\frac{1}{2}$m+$\frac{15}{4}$=0至多有一個實根(相等的根只能算一個)}中,任取一個元素m,求使得式子lgm有意義的概率.

分析 求出集合P,及滿足從P中隨機(jī)的取一元素x,恰使lgx有意義的區(qū)間,代入幾何概型概率計算公式,可得答案

解答 解:∵關(guān)于x的方程x2+mx-$\frac{1}{2}$m+$\frac{15}{4}$=0至多有一個實根(相等的根只能算一個),
∴m2-4(-$\frac{1}{2}$m+$\frac{15}{4}$)≤0,
解得-5≤m≤3,
故P=[-5,3],
使得式子lgm有意義,則0<m≤3,
故任取一個元素m,求使得式子lgm有意義的概率為$\frac{3-0}{3-(-5)}$=$\frac{3}{8}$

點評 本題考查的知識點是幾何概型概率計算公式,計算出滿足條件和所有基本事件對應(yīng)的幾何量,是解答的關(guān)鍵,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.執(zhí)行如圖所示的程序框圖,若輸入的n值為5,則輸出的S值是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)E,F(xiàn)分別是邊長為1的正方形ABCD的邊BC,CD上的點,∠EAF=45°,則$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值等于( 。
A.$\sqrt{2}$B.1C.2($\sqrt{2}$-1)D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知等腰三角形頂角的余弦值為m,則底角的余弦值為( 。
A.$\frac{\sqrt{2(1-m)}}{2}$B.$\frac{\sqrt{2(1+m)}}{2}$C.$±\frac{\sqrt{2(1-m)}}{2}$D.$±\frac{\sqrt{2(1+m)}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)P為雙曲線$\frac{x^2}{a^2}$-y2=1(a>0)的上一點,∠F1PF2=$\frac{2π}{3}$,(F1、F2為左、右焦點),則△F1PF2的面積等于( 。
A.$\sqrt{3}{a^2}$B.$\frac{{\sqrt{3}}}{3}{a^2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在復(fù)平面內(nèi),復(fù)數(shù)z=$\frac{2}{1-i}$-2i3(i為虛數(shù)單位)表示的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=${2^{2x-{x^2}}}$的值域為(0,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.各棱長都等于4的四面ABCD中,設(shè)G為BC的中點,E為△ACD內(nèi)的動點(含邊界),且GE∥平面ABD,若$\overrightarrow{AE}$•$\overrightarrow{BD}$=1,則|$\overrightarrow{AE}$|=$\frac{\sqrt{21}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一個正三棱柱的側(cè)棱長和底面邊長相等,體積為$16\sqrt{3}c{m^3}$,它的三視圖中的俯視圖如圖所示,側(cè)視圖是一個矩形,則側(cè)視圖的面積是( 。
A.8B.$8\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案