A. | $\sqrt{2}$ | B. | 1 | C. | 2($\sqrt{2}$-1) | D. | $\sqrt{2}$-1 |
分析 以A為坐標(biāo)原點(diǎn),AB,AD所在的直線為x,y軸建立直角坐標(biāo)系,設(shè)E(1,m),F(xiàn)(n,1),求得tan∠EAB=m,tan∠FAD=n,由兩角和的正切公式可得tan(∠EAB+∠FAD)=1,即有m+n+mn=1,運(yùn)用基本不等式可得mn≤($\frac{n+m}{2}$)2,解m+n的不等式即可得到所求最小值.
解答 解:以A為坐標(biāo)原點(diǎn),AB,AD所在的直線為x,y軸建立直角坐標(biāo)系,
設(shè)E(1,m),F(xiàn)(n,1),
tan∠EAB=m,tan∠FAD=n,
且tan(∠EAB+∠FAD)=tan(90°-∠EAF)=tan45°=1,
即有$\frac{tan∠EAB+tan∠FAD}{1-tan∠EAB•tan∠FAD}$=$\frac{m+n}{1-mn}$=1,
即為m+n+mn=1,
則$\overrightarrow{AE}$•$\overrightarrow{AF}$=(1,m)•(n,1)=m+n,
由mn≤($\frac{n+m}{2}$)2,可得1=m+n+mn≤(m+n)+$\frac{(m+n)^{2}}{4}$,
解不等式可得m+n≥2($\sqrt{2}$-1),
當(dāng)且僅當(dāng)m=n時(shí),$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值為2($\sqrt{2}$-1),
故選:C.
點(diǎn)評(píng) 本題考查向量的數(shù)量積的坐標(biāo)表示和最值的求法,注意運(yùn)用基本不等式和兩角和的正切公式,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2 | C. | -2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 2 | C. | 2015 | D. | 4032 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com