在某國際高端經(jīng)濟(jì)論壇上,前六位發(fā)言的是與會的含有甲、乙的6名中國經(jīng)濟(jì)學(xué)專家,他們的發(fā)言順序通過隨機(jī)抽簽方式?jīng)Q定.
(Ⅰ)求甲、乙兩位專家恰好排在前兩位出場的概率;
(Ⅱ)發(fā)言中甲、乙兩位專家之間的中國專家數(shù)記為,求的分布列和數(shù)學(xué)期望.

(1)
(2)的分布列為


0
1
2
3
4
P





                                                                   
∴E=0×+1×+2×+3×+4×=

解析試題分析:解:(Ⅰ)設(shè)“甲、乙兩位專家恰好排在前兩位出場”為事件A,則
P(A)==.                                      3分
答:甲、乙兩位專家恰好排在前兩位出場的概率為.            4分
(Ⅱ)的可能取值為0,1,2,3,4.                      5分
P(=0)==,P(=1)==
P(=2)==,P(=3)==
P(=4)==.                                   9分
的分布列為


0
1
2
3
4
P





                                                                    10分
∴E=0×+1×+2×+3×+4×=.              12分
考點(diǎn):分布列,古典概型
點(diǎn)評:主要是考查了等可能事件的概率和離散型隨機(jī)變量的分布列的求解和運(yùn)用。屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋子A、B中均裝有若干個大小相同的紅球和白球,從A中摸出一個紅球的概率是,從B中摸出一個紅球的概率為p.
(1)  從A中有放回地摸球,每次摸出一個,有3次摸到紅球即停止。
①求恰好摸5次停止的概率;
②記5次之內(nèi)(含5次)摸到紅球的次數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望。
(2)若A、B兩個袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是,求p的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲、乙兩隊在進(jìn)行一場五局三勝制的排球比賽中,規(guī)定先贏三局的隊獲勝,并且比賽就此結(jié)束,現(xiàn)已知甲、乙兩隊每比賽一局,甲隊獲勝的概率為,乙隊獲勝的概率為,且每局比賽的勝負(fù)是相互獨(dú)立的,問:
(1)甲隊以獲勝的概率是多少?
(2)乙隊獲勝的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

口袋中有大小、質(zhì)地均相同的7個球,3個紅球,4個黑球,現(xiàn)在從中任取3個球。
(1)求取出的球顏色相同的概率;
(2)若取出的紅球數(shù)設(shè)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2012年3月2日,江蘇衛(wèi)視推出全新益智答題類節(jié)目《一站到底》,甲、乙兩人報名參加《一站到底》面試的初試選拔,已知在備選的10道試題中,甲能答對其中的6題,乙能答對其中的8題.規(guī)定每次搶答都從備選題中隨機(jī)抽出3題進(jìn)行測試,至少答對2題初試才能通過.
(Ⅰ)求甲答對試題數(shù)ξ的概率分布及數(shù)學(xué)期望;
(Ⅱ)求甲、乙兩人至少有一人初試通過的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某品牌汽車4S店對最近100位采用分期付款的購車者進(jìn)行統(tǒng)計,統(tǒng)計結(jié)果如下表所示:

付款方式
分1期
分2期
分3期
分4期
分5期
頻數(shù)
40
20

10

已知分3期付款的頻率為0.2,4s店經(jīng)銷一輛該品牌的汽車,顧客分1期付款,其利潤為1萬元,分2期或3期付款其利潤為1.5萬元,分4期或5期付款,其利潤為2萬元,用Y表示經(jīng)銷一輛汽車的利潤。
(Ⅰ)求上表中的值;
(Ⅱ)若以頻率作為概率,求事件:“購買該品牌汽車的3位顧客中,至多有一位采用3期付款”的概率;
(Ⅲ)求Y的分布列及數(shù)學(xué)期望EY

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

將一個半徑適當(dāng)?shù)男∏蚍湃肴鐖D所示的容器最上方的入口處,小球?qū)⒆杂上侣洌∏蛟?br />下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
(Ⅰ)求小球落入袋中的概率;
(Ⅱ)在容器入口處依次放入4個小球,記為落入袋中的小球個數(shù),試求的概率和的數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

張師傅駕車從公司開往火車站,途徑4個公交站,這四個公交站將公司到火車站
分成5個路段,每個路段的駕車時間都是3分鐘,如果遇到紅燈要停留1分鐘,假設(shè)他在各
交通崗是否遇到紅燈是相互獨(dú)立的,并且概率都是
(1)求張師傅此行時間不少于16分鐘的概率
(2)記張師傅此行所需時間為Y分鐘,求Y的分布列和均值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)某校舉行環(huán)保知識大獎賽,比賽分初賽和決賽兩部分,初賽采用選手選一題答一題的方式進(jìn)行,每位選手最多有5次選題答題的機(jī)會,選手累計答對3題或答錯3題即終止其初賽的比賽,答對3題者直接進(jìn)入決賽,答錯3題者則被淘汰,已知選手甲答題連續(xù)兩次答錯的概率為,(已知甲回答每個問題的正確率相同,并且相互之間沒有影響。)(I)求甲選手回答一個問題的正確率;(Ⅱ)求選手甲可進(jìn)入決賽的概率;(Ⅲ)設(shè)選手甲在初賽中答題的個數(shù)為,試寫出的分布列,并求的數(shù)學(xué)期望。

查看答案和解析>>

同步練習(xí)冊答案