【題目】已知函數(shù)是定義在上的偶函數(shù).當(dāng)時(shí), .

(1) 求曲線在點(diǎn)處的切線方程;

(2) 若關(guān)于的不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1)(2)

【解析】試題分析:(1)根據(jù)是偶函數(shù),當(dāng)時(shí), ,可得當(dāng)時(shí), , ,求出可得切線斜率,求出,可得切點(diǎn)坐標(biāo),由點(diǎn)斜式可得切線方程;(2)令,則原命題等價(jià)于, 恒成立, 即恒成立,設(shè),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出的最大值為,從而可得實(shí)數(shù)的取值范圍為.

試題解析:因?yàn)?/span>為偶函數(shù),所以,

當(dāng)時(shí),則,故 ,所以,

從而得到, ,

(1)當(dāng)時(shí), ,所以

所以在點(diǎn)的切線方程為: ,即

(2)關(guān)于的不等式恒成立,即 恒成立

,則原命題等價(jià)于, 恒成立,

恒成立,

, ,

當(dāng)時(shí), ,則遞增;當(dāng)時(shí), ,則遞減;

所以,當(dāng)時(shí), 取極大值,也是最大值,

所以,

即實(shí)數(shù)a的范圍為 .

【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值、不等式恒成立問(wèn)題,屬于難題.求曲線切線方程的一般步驟是:(1)求出處的導(dǎo)數(shù),即在點(diǎn) 出的切線斜率(當(dāng)曲線處的切線與軸平行時(shí),在 處導(dǎo)數(shù)不存在,切線方程為);(2)由點(diǎn)斜式求得切線方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)sin2axsin ax·cos ax (a>0)的圖象與直線yb相切,并且切點(diǎn)的橫坐標(biāo)依次成公差為的等差數(shù)列.

(1)ab的值;

(2)x0,且x0yf(x)的零點(diǎn),試寫(xiě)出函數(shù)yf(x)上的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的下頂點(diǎn)為,點(diǎn)是橢圓上異于點(diǎn)的動(dòng)點(diǎn),直線分別與軸交于點(diǎn),且點(diǎn)是線段的中點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)處時(shí),點(diǎn)的坐標(biāo)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線軸于點(diǎn),當(dāng)點(diǎn)均在軸右側(cè),且時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示為一正方體的平面展開(kāi)圖,在這個(gè)正方體中,有下列四個(gè)命題:

AFGC;

BDGC成異面直線且?jiàn)A角為60;

BDMN;

BG與平面ABCD所成的角為45.

其中正確的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正四棱錐的各條棱長(zhǎng)都相等,且點(diǎn)分別是的中點(diǎn).

1求證: ;

(2)在上是否存在點(diǎn),使平面平面,若存在,求出的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在斜三棱柱,底面為正三角形,, ,

.

(1)求異面直線所成角的余弦值;

(2)設(shè)的中點(diǎn),求面與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1, 在直角梯形中, , , , 為線段的中點(diǎn). 沿折起,使平面 平面,得到幾何體,如圖2所示.

1)求證: 平面;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買(mǎi)2臺(tái)機(jī)器該種機(jī)器使用三年后即被淘汰.機(jī)器有一易損零件,在購(gòu)進(jìn)機(jī)器時(shí),可以額外購(gòu)買(mǎi)這種零件作為備件,每個(gè)200元.在機(jī)器使用期間,如果備件不足再購(gòu)買(mǎi),則每個(gè)500元.現(xiàn)需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)購(gòu)買(mǎi)幾個(gè)易損零件,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺(tái)機(jī)器更換的易損零件數(shù)的頻率代替1臺(tái)機(jī)器更換的易損零件數(shù)發(fā)生的概率,X表示2臺(tái)機(jī)器三年內(nèi)共需更換的易損零件數(shù),n表示購(gòu)買(mǎi)2臺(tái)機(jī)器的同時(shí)購(gòu)買(mǎi)的易損零件數(shù).

(1)X的分布列;

(2)若要求P(Xn)0.5,確定n的最小值;

(3)以購(gòu)買(mǎi)易損零件所需費(fèi)用的期望值為決策依據(jù),n19n20之中選其一應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái)我國(guó)電子商務(wù)行業(yè)迎來(lái)發(fā)展的新機(jī)遇,2017年雙11全天交易額達(dá)到1682億元,為規(guī)范和評(píng)估該行業(yè)的情況,相關(guān)管理部門(mén)制定出針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行評(píng)價(jià),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.

(1)完成關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表,判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?

(2)若將頻率視為概率,某人在該購(gòu)物平臺(tái)上進(jìn)行的3次購(gòu)物中,設(shè)對(duì)商品和服務(wù)全為好評(píng)的次數(shù)為隨機(jī)變量

①求對(duì)商品和服務(wù)全為好評(píng)的次數(shù)的分布列;

②求的數(shù)學(xué)期望和方差.

附:臨界值表:

的觀測(cè)值: (其中

關(guān)于商品和服務(wù)評(píng)價(jià)的列聯(lián)表:

查看答案和解析>>

同步練習(xí)冊(cè)答案