如圖,四邊形均為菱形,,且.

(1)求證:;
(2)求證:
(3)求二面角的余弦值.

(Ⅰ)連結FO.由四邊形ABCD為菱形,得,且O為AC中點.
根據(jù)FA=FC,得到.
(Ⅱ)由四邊形均為菱形,
得到得出
平面, .
(Ⅲ)二面角A-FC-B的余弦值為.

解析試題分析:(Ⅰ)證明:設AC與BD相交于點O,連結FO.
因為四邊形ABCD為菱形,所以,且O為AC中點.
又FA=FC,所以.             2分
因為,
所以.                               3分
(Ⅱ)證明:因為四邊形均為菱形,
所以
因為
所以

所以平面

所以.              6分
(Ⅲ)解:因為四邊形BDEF為菱形,且,所以為等邊三角形.
因為中點,所以由(Ⅰ)知,故
.
兩兩垂直,建立如圖所示的空間直角坐標系.
設AB=2.因為四邊形ABCD為菱形,,則BD=2,所以OB=1,.
所以.      8分
所以.
設平面BFC的法向量為則有  所以
,得.      12分
易知平面的法向量為.
由二面角A-FC-B是銳角,得
.
所以二面角A-FC-B的余弦值為.    14分

考點:本題主要考查立體幾何中的平行關系、垂直關系,角的計算。
點評:典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關系、平行關系、角、距離的計算。證明過程中,往往需要將立體幾何問題轉(zhuǎn)化成平面幾何問題加以解答。本題解答,通過建立適當?shù)目臻g直角坐標系,利用向量的坐標運算,簡化了繁瑣的證明過程,實現(xiàn)了“以算代證”,對計算能力要求較高。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知菱形所在平面與直角梯形所在平面互相垂直,,分別是線段,的中點.

(I)求證:平面 平面;
(Ⅱ)點在直線上,且//平面,求平面與平面所成角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

長方體中,底面是正方形,,上的一點.

⑴求異面直線所成的角;
⑵若平面,求三棱錐的體積;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,點在圓上,矩形所在的平面和圓所在的平面互相垂直,且.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四邊形中,,點為線段上的一點.現(xiàn)將沿線段翻折到(點與點重合),使得平面平面,連接,.

(Ⅰ)證明:平面;
(Ⅱ)若,且點為線段的中點,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖。在直三棱柱ABC—A1B1C1中,AB=BC=2AA1,∠ABC=90°,M是BC中點。

(I)求證:A1B∥平面AMC1;
(II)求直線CC1與平面AMC1所成角的正弦值;
(Ⅲ)試問:在棱A1B1上是否存在點N,使AN與MC1成角60°?若存在,確定點N的位置;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知三棱錐S—ABC的底面是正三角形,A點在側(cè)面SBC上的射影H是△SBC的垂心.

(1)求證:BC⊥SA
(2)若S在底面ABC內(nèi)的射影為O,證明:O為底面△ABC的中心;
(3)若二面角H—AB—C的平面角等于30°,SA=,求三棱錐S—ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,⊙O的直徑AB=4,點C、D為⊙O上兩點,且∠CAB=45o,F(xiàn)為的中點.沿直徑AB折起,使兩個半圓所在平面互相垂直(如圖2).

(Ⅰ)求證:OF//平面ACD;
(Ⅱ)在上是否存在點,使得平面平面ACD?若存在,試指出點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在四面體中,,且E、F分別是AB、BD的中點,

求證:(1)直線EF//面ACD
(2)面EFC⊥面BCD

查看答案和解析>>

同步練習冊答案