18.在${(2x+\frac{1}{4x})^5}$的展開式中,x3的系數(shù)值為20.(用數(shù)字作答)

分析 利用二項(xiàng)式定理展開式的通項(xiàng)公式即可得出.

解答 解:Tr+1=${∁}_{5}^{r}$(2x)5-r$(\frac{1}{4x})^{r}$=25-3r${∁}_{5}^{r}$x5-2r
令5-2r=3,解得r=1.
∴T4=$4{∁}_{5}^{1}$x3=20x3
故答案為:20.

點(diǎn)評(píng) 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.用一個(gè)平面去截一個(gè)所有棱長(zhǎng)均為1的五棱錐,其截面圖形不可能是( 。
A.鈍角三角形B.等腰梯形C.平行四邊形D.正五邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.復(fù)數(shù)z(1+i)=2i,則z的共軛復(fù)數(shù)為( 。
A.1-iB.-1+iC.1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x|+|x-1|.
(Ⅰ)若f(x)≥|m-1|恒成立,求實(shí)數(shù)m的最大值M;
(Ⅱ)在(Ⅰ)成立的條件下,正實(shí)數(shù)a,b滿足a2+b2=M,證明:a+b≥2ab.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知正項(xiàng)數(shù)列{an}滿足an+1(an+1-2an)=9-a${\;}_{n}^{2}$,若a1=1,則a10=28.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若|a-b|>2,則關(guān)于x的不等式|x-a|+|x-b|≤2的解集為∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.隨著移動(dòng)互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)APP軟件層出不窮.現(xiàn)從使用A和B兩款訂餐軟件的商家中分別隨機(jī)抽取50個(gè)商家,對(duì)它們的“平均送達(dá)時(shí)間”進(jìn)行統(tǒng)計(jì),得到頻率分布直方圖如圖.

(Ⅰ)試估計(jì)使用A款訂餐軟件的50個(gè)商家的“平均送達(dá)時(shí)間”的眾數(shù)及平均數(shù);
(Ⅱ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),將頻率視為概率,回答以下問(wèn)題:
(。┠芊裾J(rèn)為使用B款訂餐軟件“平均送達(dá)時(shí)間”不超過(guò)40分鐘的商家達(dá)到75%?
(ⅱ)如果你要從A和B兩款訂餐軟件中選擇一款訂餐,你會(huì)選擇哪款?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.金融風(fēng)暴對(duì)全球經(jīng)濟(jì)產(chǎn)生了影響,溫總理在廣東省調(diào)研時(shí)強(qiáng)調(diào):在當(dāng)前的經(jīng)濟(jì)形勢(shì)下,要大力扶持中小型企業(yè),使中小型企業(yè)健康發(fā)展,為響應(yīng)這一精神,某銀行準(zhǔn)備新設(shè)一種定期存、貸款業(yè)務(wù),經(jīng)預(yù)側(cè).存款量與存款利率的平方成正比,比例系數(shù)為k(k>0),貸款利率為4.8%,且銀行吸收存款能全部放貸出去.
(1)若存款利率為x,x∈(0,0.048),試寫出存款量g(x)及銀行應(yīng)支付給儲(chǔ)戶的利息與存款利率x之間的函數(shù)關(guān)系式;
(2)存款利率定為多少時(shí),銀行可獲得最大收益?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知某人射擊一次命中目標(biāo)的概率是0.5.求:
(1)此人射擊6次,3次命中且恰有2次連續(xù)命中的概率;
(2)此人射擊6次,三次命中且不連續(xù)命中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案