13.已知正項(xiàng)數(shù)列{an}滿足an+1(an+1-2an)=9-a${\;}_{n}^{2}$,若a1=1,則a10=28.

分析 由已知數(shù)列遞推式變形得到an+1-an=3,即數(shù)列{an}是公差為3的等差數(shù)列,求出等差數(shù)列的通項(xiàng)公式得答案.

解答 解:由an+1(an+1-2an)=9-${{a}_{n}}^{2}$,得
${{a}_{n+1}}^{2}-2{a}_{n+1}{a}_{n}+{{a}_{n}}^{2}=9$,
即$({a}_{n+1}-{a}_{n})^{2}=9$,∴an+1-an=±3,
又?jǐn)?shù)列是正項(xiàng)數(shù)列,∴an+1-an=3,
即數(shù)列{an}是公差為3的等差數(shù)列,
∵a1=1,
∴an=a1+(n-1)d=1+3(n-1)=3n-2,
則a10=3×10-2=28.
故答案為:28.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了等差數(shù)列通項(xiàng)公式的求法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.隨機(jī)拋擲一枚質(zhì)地均勻的骰子,記正面向上的點(diǎn)數(shù)為a,則函數(shù)f(x)=x2+2ax+2有兩個(gè)不同零點(diǎn)的概率為(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖莖葉圖表示的是甲乙兩個(gè)籃球隊(duì)在3次不同比賽中的得分情況,其中有一個(gè)數(shù)字模糊不清,在圖中以m表示,若甲隊(duì)的平均得分不低于乙隊(duì)的平均得分,那么m的可能取值集合為( 。
A.{2}B.{1,2}C.{0,1,2}D.{2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)集合$M=\left\{{(x,y)\left|{y=\sqrt{1-{x^2}}}\right.}\right\}$,N={(x,y)|y=k(x-b)+1},若對(duì)任意的0≤k≤1都有M∩N≠∅,則實(shí)數(shù)b的取值范圍是1-$\sqrt{2}$≤b≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.執(zhí)行如圖所示的程序框圖,若要使輸出的y的值等于3,則輸入的x的值可以是(  )
A.1B.2C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在${(2x+\frac{1}{4x})^5}$的展開式中,x3的系數(shù)值為20.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.隨著旅游觀念的轉(zhuǎn)變和旅游業(yè)的發(fā)展,國(guó)民在旅游休閑方面的投入不斷增多,民眾對(duì)旅游的需求也在不斷提高.某村村委會(huì)統(tǒng)計(jì)了2011到2015年五年間每年春節(jié)期間外出旅游的家庭數(shù),具體統(tǒng)計(jì)數(shù)據(jù)如表所示:
年份(x)20112012201320142015
家庭數(shù)(y) 610182226
(1)從這5年中隨機(jī)抽取兩年,求外出旅游的家庭數(shù)至少有1年多于20個(gè)的概率;
(2)利用所給數(shù)據(jù),求出春節(jié)期間外出旅游的家庭數(shù)與年份之間的回歸直線方程$\widehat y$=bx+a,
并判斷它們之間是正相關(guān)還是負(fù)相關(guān);
(3)利用(2)中所求出的直線方程估計(jì)該村2018年在春節(jié)期間外出游泳的家庭數(shù).
參考:用最小二乘法求線性回歸方程系數(shù)公式$\widehat b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}},\widehat a=\overline y-\widehat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.△ABC是以角C為直角的等腰直角三角形,AC=2,點(diǎn)H位于AB邊上,沿CH折疊△ABC,若折疊過(guò)程中始終有AB⊥CH,則三棱錐H-ABC的體積最大值為$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A={x|(1-x)(1+x)≥0},集合B={y|y=2x,x<0},則A∩B=(  )
A.(-1,1]B.[-1,1]C.(0,1)D.[-1,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案