3.若|a-b|>2,則關(guān)于x的不等式|x-a|+|x-b|≤2的解集為∅.

分析 求出|x-a|+|x-b|≥|a-b|>2,從而得到不等式的解集是空集.

解答 解:|x-a|+|x-b|≥|a-b|>2,
故不等式|x-a|+|x-b|≤2的解集為∅,
故答案為:∅.

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問(wèn)題,考查絕對(duì)值的幾何意義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的和是Sn,且任意n∈N+,都有$2{S_n}=a_n^2+{a_n}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=|an-20|,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列函數(shù):
(1)y=sin3x+3sinx;
(2)y=$\frac{1}{{e}^{x}+1}$-$\frac{1}{2}$;
(3)y=lg$\frac{1-x}{1+x}$;
(4)y=$\left\{\begin{array}{l}{-x+1,x≤0}\\{-x-1,x<0}\end{array}\right.$;
其中是奇函數(shù)且在(0,1)上是減函數(shù)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.集合A={x|-1<x<3},集合B={x|$\frac{1}{3}<{3}^{x}<9$},則A∩B=( 。
A.(1,2)B.(-1,2)C.(1,3)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在${(2x+\frac{1}{4x})^5}$的展開(kāi)式中,x3的系數(shù)值為20.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知兩個(gè)不相等的非零向量$\overrightarrow{a},\overrightarrow$,兩組向量$\overrightarrow{{x}_{1}},\overrightarrow{{x}_{2}},\overrightarrow{{x}_{3}},\overrightarrow{{x}_{4}},\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}},\overrightarrow{{y}_{2}},\overrightarrow{{y}_{3}},\overrightarrow{{y}_{4}},\overrightarrow{{y}_{5}}$均由2個(gè)$\overrightarrow{a}$和3個(gè)$\overrightarrow$排成一列而成.記$\overrightarrow{{x}_{1}}•\overrightarrow{{y}_{1}}+\overrightarrow{{x}_{2}}•\overrightarrow{{y}_{2}}+\overrightarrow{{x}_{3}}•\overrightarrow{{y}_{3}}+\overrightarrow{{x}_{4}}•\overrightarrow{{y}_{4}}+\overrightarrow{{x}_{5}•\overrightarrow{{y}_{5}}}$,Smin表示S所有可能取值中的最小值,則下列正確的是( 。
A.${S_{min}}={a^2}+2ab+2{b^2}$B.${S_{min}}=2{a^2}+3{b^2}$
C.若$\overrightarrow{a}$⊥$\overrightarrow$,則Smin與|$\overrightarrow{a}$|無(wú)關(guān)D.S有5個(gè)不同的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.某同學(xué)的父母想為他3年后讀大學(xué)準(zhǔn)備一筆資金,從2013年他考入馬鞍山市某高中起,在每年的8月1日到銀行存入a元錢(qián),連存三年,若年利率r保持不變,且每年到期的本金和利息均自動(dòng)轉(zhuǎn)為新一年的本金(不計(jì)利息稅),則到2016年8月1日可取回的本息和(元)為$\frac{a}{r}$•[(1+r)4-1-r].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)=ex-lnx在x=x0處的切線與x軸平行,若x0∈D,則D可能是(  )
A.(0,$\frac{1}{2}$)B.($\frac{1}{2}$,1)C.(1,$\frac{3}{2}$)D.($\frac{3}{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={x|x≥0},B={-1,0,1},則A∩B=(  )
A.{1}B.{0,1}C.{-1,0}D.

查看答案和解析>>

同步練習(xí)冊(cè)答案