分析 (1)根據(jù)對數(shù)函數(shù)的真數(shù)要大于0,即可求解函數(shù)f(x)的定義域;
(2)函數(shù)g(x)=10f(x)+2x,求解出g(x)的解析式,在求其值域.
解答 解:(1)由題意:函數(shù)f(x)=lg(2+x)+lg(2-x)=$lg(\frac{2+x}{2-x})$
∴函數(shù)f(x)的定義域滿足:$\left\{\begin{array}{l}{2-x>0}\\{2+x>0}\end{array}\right.$,解得:-2<x<2
故函數(shù)f(x)的定義域為(-2,2).
(2)∵函數(shù)g(x)=10f(x)+2x,
∴g(x)=$\frac{2+x}{2-x}$+2x=$\frac{2{x}^{2}-5x-2}{x-2}$=$\frac{2}{x-2}+2(x-2)+3$,(-2<x<2)
∵$-(\frac{2}{2-x}+2(2-x)$$≥-2\sqrt{4}=-4$,即$\frac{2}{x-2}+2(x-2)≤4$,當(dāng)且僅當(dāng)x=1時取等號.
根據(jù)勾勾函數(shù)的性質(zhì):可得:函數(shù)g(x)在(-2,1)時,是增函數(shù),(1,2)時,是減函數(shù).
故得g(x)∈(-$\frac{11}{2}$,7].
所以函數(shù)g(x)的值域為(-$\frac{11}{2}$,7].
點評 本題考查了對數(shù)的定義域的求法和計算能力以及值域的問題.屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 8 | C. | 2π | D. | 4π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | 4 | C. | $2\sqrt{6}$ | D. | $4\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $f(x)=sin({2x+\frac{π}{3}})$ | B. | $f(x)=sin({2x+\frac{π}{6}})$ | C. | $f(x)=sin({\frac{1}{2}x+\frac{π}{3}})$ | D. | $f(x)=sin({\frac{1}{2}x+\frac{π}{6}})$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com