11.已知拋物線y2=16x的焦點F,M是拋物線C上位于第一象限內(nèi)的一點,O為坐標原點,若△OFM的外接圓D與拋物線C的準線相切,則圓D與直線x-$\sqrt{3}$y-2=0相交得到的弦長為( 。
A.$2\sqrt{3}$B.4C.$2\sqrt{6}$D.$4\sqrt{3}$

分析 先求出圓D的圓心與半徑,再求出圓心到直線的距離,即可求出圓D與直線x-$\sqrt{3}$y-2=0相交得到的弦長.

解答 解:∵△OFM的外接圓與拋物線C的準線相切,
∴△OFM的外接圓的圓心到準線的距離等于圓的半徑,
又∵圓心在OF的垂直平分線上,|OF|=$\frac{p}{2}$=4,
∴圓的半徑為6,圓心的橫坐標為2,
∴圓心的縱坐標為±$\sqrt{36-4}$=±4$\sqrt{2}$,
∴圓心到直線的距離d=$\frac{|2-4\sqrt{6}-2|}{2}$=2$\sqrt{6}$,
∴圓D與直線x-$\sqrt{3}$y-2=0相交得到的弦長為2$\sqrt{36-24}$=4$\sqrt{3}$,
故選:D.

點評 本題考查圓與圓錐曲線的綜合,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=7,$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{3π}{4}$,則|$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{65}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.同時擲3枚硬幣,最多有2枚正面向上的概率是( 。
A.$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知等比數(shù)列{an}的各項均為正數(shù),且6a2,1,4a1成等差數(shù)列,3a6,a3,3a2成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)已知bn=log3$\frac{1}{{a}_{n}}$,記cn=an•bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.數(shù)列{an}滿足a1=1,log2an+1=log2an+1,它的前n項和為Sn,則滿足Sn>2015的最小的n值是11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=lg(2+x)+lg(2-x)
(1)求函數(shù)f(x)的定義域;
(2)記函數(shù)g(x)=10f(x)+2x,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知映射$f:R→{R_+},x→{x^2}+1$.則10的原象是(  )
A.3B.-3C.3和-3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖所示,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.
注:圓臺的體積和側面積公式:
V=$\frac{1}{3}$(S+S+$\sqrt{S上•S下}$)h=$\frac{1}{3}$π(r${\;}_{1}^{2}$+r${\;}_{2}^{2}$+r1r2)h
S=π(r+r)l
圓錐的側面積公式:V=$\frac{1}{3}$Sh,S=πrl.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.對于直線l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0,下列兩個命題中是真命題的為①.
①“A1A2+B1B2=0”是“l(fā)1⊥l2”充要條件;
②“(-$\frac{{A}_{1}}{{B}_{1}}$)•(-$\frac{{A}_{2}}{{B}_{2}}$)=-1”是“l(fā)1⊥l2”充要條件;
③“A1B2-A2B1=0”是“l(fā)1∥l2”的充要條件;
④“-$\frac{{A}_{1}}{{B}_{1}}$=-$\frac{{A}_{2}}{{B}_{2}}$”是“l(fā)1∥l2”的充要條件.

查看答案和解析>>

同步練習冊答案