5.已知α∈(0,π),cosα=$\frac{4}{5}$,則sin(π-α)=$\frac{3}{5}$.

分析 根據(jù)同角三角函數(shù)關(guān)系式,結(jié)合角的取值范圍,可求得sinα=$\frac{3}{5}$,根據(jù)誘導(dǎo)公式,可以求得sin(π-α)=sinα=$\frac{3}{5}$.

解答 解:∵α∈(0,π),cosα=$\frac{4}{5}$,
∴sinα=$\sqrt{1-co{s}^{2}α}$=$\frac{3}{5}$,
∴根據(jù)誘導(dǎo)公式,得:sin(π-α)=sinα=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)關(guān)系式,誘導(dǎo)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.某人射擊一次擊中目標(biāo)概率為$\frac{3}{5}$,經(jīng)過3次射擊,記X表示擊中目標(biāo)的次數(shù),則方差D(X)=( 。
A.$\frac{18}{25}$B.$\frac{6}{25}$C.$\frac{3}{5}$D.$\frac{9}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x-aex-e2x(a∈R,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若f(x)≤0對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若方程x-aex=0有兩個(gè)不同的實(shí)數(shù)解x1,x2,求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線l過點(diǎn)(3,1)且與直線2x-y-2=0平行,則直線l的方程為( 。
A.2x-y-5=0B.2x-y+1=0C.x+2y-7=0D.x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.同時(shí)擲3枚硬幣,最多有2枚正面向上的概率是(  )
A.$\frac{7}{8}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={x|x2-4x+3=0},B={x|x2-5x<0,x∈N},則滿足條件A⊆C⊆B的集合C的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且6a2,1,4a1成等差數(shù)列,3a6,a3,3a2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=log3$\frac{1}{{a}_{n}}$,記cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lg(2+x)+lg(2-x)
(1)求函數(shù)f(x)的定義域;
(2)記函數(shù)g(x)=10f(x)+2x,求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列各組命題中,滿足“p或q為真”,且“非p為真”的是( 。
A.p:0=∅;q:0∈∅
B.p:在△ABC中,若cos2A=cos2B,則A=B;q:y=sinx在第一象限是增函數(shù)
C.p:a+b≥2$\sqrt{ab}$(a,b∈R);q:不等式|x|>x的解集為(-∞,0)
D.p:圓(x-1)2+(y-2)2=1的面積被直線x=1平分;q:橢圓$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的離心率為e=$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案