分析 (1)運(yùn)用數(shù)列通項(xiàng)和前n項(xiàng)和的關(guān)系:當(dāng)n=1時(shí),a1=S1;當(dāng)n>1時(shí),an=Sn-Sn-1,計(jì)算即可得到所求通項(xiàng)公式;
(2)求得$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),由數(shù)列的求和方法:裂項(xiàng)相消求和,化簡(jiǎn)即可得到所求和.
解答 解:(1)當(dāng)n=1時(shí),a1=S1=$\frac{1}{2}$+$\frac{1}{2}$=1;
當(dāng)n>1時(shí),an=Sn-Sn-1=$\frac{1}{2}$n2+$\frac{1}{2}$n-$\frac{1}{2}$(n-1)2-$\frac{1}{2}$(n-1)=n.
顯然,當(dāng)n=1時(shí),也適合上式,
則數(shù)列{an}的通項(xiàng)公式an=1+n-1=n;
(2)由$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2($\frac{1}{n}$-$\frac{1}{n+1}$),
可得T=$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$=2(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)
=2(1-$\frac{1}{n+1}$)=$\frac{2n}{n+1}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法,注意運(yùn)用數(shù)列通項(xiàng)和前n項(xiàng)和的關(guān)系:當(dāng)n=1時(shí),a1=S1;當(dāng)n>1時(shí),an=Sn-Sn-1,考查數(shù)列的求和方法:裂項(xiàng)相消求和,考查化簡(jiǎn)整理的運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com