【題目】已知函數(shù),其中.
(1)當時,求曲線在點處的切線方程;
(2)當時,求函數(shù)的單調(diào)區(qū)間與極值.
【答案】(1)(2)見解析
【解析】試題分析: (1)利用導數(shù)的幾何意義:切線斜率等于,再根據(jù)點斜式求切線方程;(2)先明確函數(shù)的定義域,再求函數(shù)導數(shù),研究導函數(shù)在定義域上的零點: 由,得,分類討論兩個零點的大小,再結合列表確定函數(shù)的單調(diào)區(qū)間與極值.
試題解析:(1)當時, ,此時,
所以
又因為切點為,所以切線方程
曲線在點處的切線方程為
(2)由于,
所以
由,得
(1)當時,則,易得在區(qū)間, 內(nèi)為減函數(shù),
在區(qū)間為增函數(shù),故函數(shù)在處取得極小值
函數(shù)在處取得極大值
當時,則,易得在區(qū)間, 內(nèi)為增函數(shù),
在區(qū)間為減函數(shù),故函數(shù)在處取得極小值;
函數(shù) 在處取得極大值
點睛:本題考查導數(shù)的幾何意義,屬于基礎題目. 函數(shù)y=f(x)在x=x0處的導數(shù)的幾何意義,就是曲線y=f(x)在點P(x0,y0)處的切線的斜率,過點P的切線方程為: .求函數(shù)y=f(x)在點P(x0,y0)處的切線方程與求函數(shù)y=f(x)過點P(x0,y0)的切線方程意義不同,前者切線有且只有一條,且方程為y-y0=f′(x0)(x-x0),后者可能不只一條.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的定義域為為的導函數(shù).
(1)求方程的解集;
(2)求函數(shù)的最大值與最小值;
(3)若函數(shù)在定義域上恰有2個極值點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法錯誤的是( )
A. 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
B. 在線性回歸分析中,回歸直線不一定過樣本點的中心
C. 在回歸分析中, 為0.98的模型比為0.80的模型擬合的效果好
D. 自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關系叫做相關關系
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一項針對人們休閑方式的調(diào)查結果如下:受調(diào)查對象總計124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個的列聯(lián)表;
(2)根據(jù)下列提供的獨立檢驗臨界值表,你最多能有多少把握認為性別與休閑方式有關系?
獨立檢驗臨界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校用“10分制”調(diào)查本校學生對教師教學的滿意度,現(xiàn)從學生中隨機抽取16名,以下莖葉圖記錄了他們對該校教師教學滿意度的分數(shù)(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉):
(Ⅰ)若教學滿意度不低于9.5分,則稱該生對教師的教學滿意度為“極滿意”.求從這16人中隨機選取3人,至少有1人是“極滿意”的概率;
(Ⅱ)以這16人的樣本數(shù)據(jù)來估計整個學校的總體數(shù)據(jù),若從該校所有學生中(學生人數(shù)很多)任選3人,記表示抽到“極滿意”的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com