1.已知a>0,b>0,c>0,用綜合法證明:$\frac{b+c}{a}$+$\frac{c+a}$+$\frac{a+b}{c}$≥6.

分析 由a>0,b>0,c>0,運用基本不等式,可得$\frac{a}$+$\frac{a}$≥2,$\frac{c}{a}$+$\frac{a}{c}$≥2,$\frac{c}$+$\frac{c}$≥2,相加即可得證.

解答 證明:a>0,b>0,c>0,可得
$\frac{a}$+$\frac{a}$≥2$\sqrt{\frac{a}•\frac{a}}$=2,
$\frac{c}{a}$+$\frac{a}{c}$≥2$\sqrt{\frac{c}{a}•\frac{a}{c}}$=2,
$\frac{c}$+$\frac{c}$≥2$\sqrt{\frac{c}•\frac{c}}$=2,
相加可得($\frac{a}$+$\frac{a}$)+($\frac{c}{a}$+$\frac{a}{c}$)+($\frac{c}$+$\frac{c}$)≥6,
即為$\frac{b+c}{a}$+$\frac{c+a}$+$\frac{a+b}{c}$≥6,
(當且僅當a=b=c取得等號).

點評 本題考查不等式的證明,注意運用二元均值不等式,考查推理能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.下列說法正確的是(  )
A.命題“?x∈R使得x2+2x+3<0”的否定是:“?x∈R,x2+2x+3>0”
B.命題p:“?x∈R,sinx+cosx≤$\sqrt{2}$”,則¬p是真命題
C.“p∧q為真命題”是“p∨q為真命題”的必要不充分條件
D.“a<1”是“${log_{\frac{1}{2}}}$a>0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)數(shù)列{an}的前n項和為Sn,已知3Sn=4an-2,n∈N+
(1)求數(shù)列{an}的通項公式;
(2)Tn是數(shù)列{log2an}的前n項和,求滿足(1-$\frac{1}{{T}_{2}}$)(1-$\frac{1}{{T}_{3}}$)(1-$\frac{1}{{T}_{4}}$)…(1-$\frac{1}{{T}_{n}}$)>$\frac{51}{100}$的最大正整數(shù)n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.作下列函數(shù)的簡圖:
(1)y=$\frac{1}{2}$(cosx+|cosx|);
(2)y=sin|x-$\frac{π}{2}$|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列對應(yīng)中是集合A到B上的一一映射的是( 。
A.A=R,B=R,f:x→y=x2B.A=R,B=R,f:x→y=-$\root{3}{x}$
C.A=R,B=R,f:x→y=x6D.A={x|x≥0},B{y|y>0},f:x→y=|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知sin(α+β)•cosβ-cos(α+β)•sinβ=$\frac{3}{5}$,則cos2α=$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知f(x)=ex-x-1(e為自然對數(shù)的底數(shù)).
(1)求證:f(x)≥0恒成立;
(2)求證:($\frac{1}{2n}$)n+($\frac{3}{2n}$)n+($\frac{5}{2n}$)n+…+($\frac{2n-1}{2n}$)n<$\frac{\sqrt{e}}{e-1}$對一切正整數(shù)n均成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知0<α<$\frac{π}{2}$<β<π,tan$\frac{α}{2}=\frac{1}{2}$,cos(β-α)=$\frac{\sqrt{2}}{10}$.
(1)求sinα的值;
(2)求sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知關(guān)于x的不等式ax2+3x+2>0(a∈R).
(1)若不等式ax2+3x+2>0的解集為{x|b<x<1},求a,b的值.
(2)求關(guān)于x的不等式ax2+3x+2>-ax-1(其中a>0)的解集.

查看答案和解析>>

同步練習冊答案