分析 由A,B在平面α的同側(cè)和異側(cè)兩種情況分類討論經(jīng),能求出A,B的中點(diǎn)P到平面α的距離.
解答 解:當(dāng)A,B在平面α的同側(cè)時(shí),
A,B的中點(diǎn)P到平面α的距離是:$\frac{3+5}{2}$=4;
當(dāng)A,B在平面α的異側(cè)時(shí),
A,B的中點(diǎn)P到平面α的距離是:$\frac{5-3}{2}$=1.
∴A,B的中點(diǎn)P到平面α的距離是4或1.
故答案為:4或1.
點(diǎn)評 本題考查點(diǎn)到平面的距離的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意分類討論思想的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -8 | B. | 4 | C. | 10 | D. | 2014 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9 | B. | 10 | C. | 9 或 10 | D. | 10 或 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-2,-1,0} | B. | {-1,0,1,2} | C. | {-2,-1} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 0 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 4 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com