【題目】某公司為了解所經銷商品的使用情況,隨機問卷50名使用者,然后根據(jù)這50名的問卷評分數(shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分數(shù)據(jù)的中位數(shù);
(2)從評分在[40,60)的問卷者中,隨機抽取2人,求此2人評分都在[50,60)的概率.
【答案】(1)a=0.006;76; (2)
【解析】
(1)根據(jù)頻率分布直方圖,由概率之和為1求解a,設中位數(shù)為m,根據(jù)中位數(shù)平分直方圖的面積求解.
(2)由頻率分布直方圖,可知在[40,50)內的人數(shù):0.004×10×50=2,在[50,60)內的人數(shù):0.006×10×50=3.設在[40,50)內的2人分別為a1,a2,在[50,60)內的3人分別為B1,B2,B3,列舉出[40,60)的問卷者中隨機抽取2人,基本事件的種數(shù),再找出其中2人評分都在[50,60)內的基本事件的種數(shù),利用古典概型的概率公式求解.
(1)由頻率分布直方圖,可得(0.004+a+0.0156+0.0232+0.0232+0.028)×10=1,
解得a=0.006.
由頻率分布直方圖,可設中位數(shù)為m,則有(0.004+0.006+0.0232)×10+(m﹣70)×0.028=0.5,解得中位數(shù)m=76.
(2)由頻率分布直方圖,可知在[40,50)內的人數(shù):0.004×10×50=2,
在[50,60)內的人數(shù):0.006×10×50=3.
設在[40,50)內的2人分別為a1,a2,在[50,60)內的3人分別為B1,B2,B3,
則從[40,60)的問卷者中隨機抽取2人,基本事件有10種,分別為:
(a1,a2),(a1,B1),(a1,B2),(a1,B3),(a2,B1),
(a2,B2),(a2,B3),(B1,B2),(B1,B3),(B2,B3),
其中2人評分都在[50,60)內的基本事件有(B1,B2),(B1,B3),(B2,B3)共3種,
故此2人評分都在[50,60)的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù)同時滿足:①對任意,都有;②當時,,
(1)當時,求的表達式;
(2)若關于的方程在上有實數(shù)解,求實數(shù)的取值范圍;
(3)若對任意,關于的不等式都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點為原點,其焦點到直線的距離為.設為直線上的點,過點作拋物線的兩條切線,其中為切點.
(1) 求拋物線的方程;
(2) 當點為直線上的定點時,求直線的方程;
(3) 當點在直線上移動時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),點和是函數(shù)圖像的相鄰的兩個對稱中心,且函數(shù)在區(qū)間內單調遞減,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知傾斜角為的直線經過點.以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為
(1)寫出曲線的普通方程;
(2)若直線與曲線有兩個不同的交點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}的前n項和為Sn,已知an>0,an2+2an=4Sn+3.
(1)求a1的值;
(2)求{an}的通項公式:
(3)設bn=,求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,橢圓C:的離心率是,拋物線E:的焦點F是C的一個頂點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P是E上的動點,且位于第一象限,E在點P處的切線與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
(i)求證:點M在定直線上;
(ii)直線與y軸交于點G,記的面積為,的面積為,求的最大值及取得最大值時點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com