【題目】平面直角坐標(biāo)系中,橢圓C的離心率是,拋物線E的焦點(diǎn)FC的一個頂點(diǎn).

)求橢圓C的方程;

)設(shè)PE上的動點(diǎn),且位于第一象限,E在點(diǎn)P處的切線C交與不同的兩點(diǎn)AB,線段AB的中點(diǎn)為D,直線OD與過P且垂直于x軸的直線交于點(diǎn)M

i)求證:點(diǎn)M在定直線上;

ii)直線y軸交于點(diǎn)G,記的面積為,的面積為,求的最大值及取得最大值時點(diǎn)P的坐標(biāo).

【答案】;)()見解析;(的最大值為,此時點(diǎn)的坐標(biāo)為

【解析】

試題()根據(jù)橢圓的離心率和焦點(diǎn)求方程;

)()由點(diǎn)P的坐標(biāo)和斜率設(shè)出直線l的方程和拋物線聯(lián)立,進(jìn)而判斷點(diǎn)M在定直線上;

)分別列出面積的表達(dá)式,根據(jù)二次函數(shù)求最值和此時點(diǎn)P的坐標(biāo).

試題解析:()由題意知:,解得

因為拋物線的焦點(diǎn)為,所以,

所以橢圓的方程為

)(1)設(shè),由可得,

所以直線的斜率為,其直線方程為,即

設(shè),聯(lián)立方程組

消去并整理可得,

故由其判別式可得,

,

代入可得,

因為,所以直線的方程為

聯(lián)立可得點(diǎn)的縱坐標(biāo)為,即點(diǎn)在定直線上.

2)由(1)知直線的方程為,

,所以

,

所以,

所以,令,則,

因此當(dāng),即時,最大,其最大值為,此時滿足,

所以點(diǎn)的坐標(biāo)為,因此的最大值為,此時點(diǎn)的坐標(biāo)為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了解所經(jīng)銷商品的使用情況,隨機(jī)問卷50名使用者,然后根據(jù)這50名的問卷評分?jǐn)?shù)據(jù),統(tǒng)計得到如圖所示的頻率布直方圖,其統(tǒng)計數(shù)據(jù)分組區(qū)間為[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

1)求頻率分布直方圖中a的值并估計這50名使用者問卷評分?jǐn)?shù)據(jù)的中位數(shù);

2)從評分在[40,60)的問卷者中,隨機(jī)抽取2人,求此2人評分都在[5060)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點(diǎn).

1)求證: 平面;

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖 所示,一條直角走廊寬為

1)若位于水平地面上的一根鐵棒在此直角走廊內(nèi),且,試求鐵棒的長;

2)若一根鐵棒能水平地通過此直角走廊,求此鐵棒的最大長度;

3)現(xiàn)有一輛轉(zhuǎn)動靈活的平板車,其平板面是矩形,它的寬如圖2.平板車若想順利通過直角走廊,其長度不能超過多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體中,為正方形,,二面角的余弦值為,且.

(1)證明:平面平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某自來水廠的蓄水池有噸水,水廠每小時可向蓄水池中注水噸,同時蓄水池又向居民小區(qū)不間斷供水,小時內(nèi)供水總量為噸,其中

)從供水開始到第幾小時,蓄水池中的存水量最少? 最少水量是多少噸?

)若蓄水池中水量少于噸時,就會出現(xiàn)供水緊張現(xiàn)象,請問:在一天的小時內(nèi),大約有幾小時出現(xiàn)供水緊張現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中以為極點(diǎn),軸非負(fù)半軸為極軸建立坐標(biāo)系圓,直線的極坐標(biāo)方程分別

.

(Ⅰ)求交點(diǎn)的極坐標(biāo);

(Ⅱ)設(shè)的圓心, 交點(diǎn)連線的中點(diǎn),已知直線的參數(shù)方程為

(為參數(shù)),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,焦距為 2,一條準(zhǔn)線方程為為橢圓上一點(diǎn),直線交橢圓于另一點(diǎn).

(1)求橢圓的方程;

(2)若點(diǎn)的坐標(biāo)為,求過三點(diǎn)的圓的方程;

(3)若,且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口有一個泊位,現(xiàn)統(tǒng)計了某月100艘輪船在該泊位?康臅r間(單位:小時),如果?繒r間不足半小時按半小時計時,超過半小時不足1小時按1小時計時,以此類推,統(tǒng)計結(jié)果如表:

?繒r間

2.5

3

3.5

4

4.5

5

5.5

6

輪船數(shù)量

12

12

17

20

15

13

8

3

(Ⅰ)設(shè)該月100艘輪船在該泊位的平均?繒r間為小時,求的值;

(Ⅱ)假定某天只有甲、乙兩艘輪船需要在該泊位?小時,且在一晝夜的時間段中隨機(jī)到達(dá),求這兩艘輪船中至少有一艘在停靠該泊位時必須等待的概率.

查看答案和解析>>

同步練習(xí)冊答案