7.已知傾斜角為α的直線l與直線x+2y-3=0垂直,則cos($\frac{2015π}{2}$+2α)的值為$\frac{4}{5}$.

分析 利用同角三角函數(shù)的基本關(guān)系,誘導(dǎo)公式,求得要求式子的值.

解答 解:由題意得$tanα•(-\frac{1}{2})=-1⇒tanα=2$,
∴$cos(\frac{2015π}{2}+2α)=sin2α=\frac{2sinαcosα}{{{{sin}^2}α+{{cos}^2}α}}$=$\frac{2tanα}{{1+{{tan}^2}α}}=\frac{4}{5}$,
故答案為:$\frac{4}{5}$.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,誘導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.用1,2,3,4,5,組成無(wú)重復(fù)數(shù)字的五位數(shù),則1,3相鄰,而2,4不相鄰的數(shù)有( 。
A.48個(gè)B.36個(gè)C.24個(gè)D.12個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.函數(shù)f(x)=sinx+3x的導(dǎo)函數(shù)f′(x)=cosx+3xln3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.長(zhǎng)方體A1B1C1D1-ABCD中,AB=AD=2,A1A=2$\sqrt{6}$,M為棱C1C的中點(diǎn),C1D與D1C交于點(diǎn)N,求證:AM⊥A1N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè){an}是等差數(shù)列,a1+a3+a5=9,a6=9,則這個(gè)數(shù)列的前8項(xiàng)和等于( 。
A.12B.24C.36D.48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知sin($\frac{π}{2}$+θ)=-$\frac{1}{2}$,則2sin2$\frac{θ}{2}$-1( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中,最小值為2的是(  )
A.$y=x+\frac{1}{x}$B.$y=lgx+\frac{1}{lgx}(1<x<10)$
C.$y=sinx+\frac{2}{sinx}(0<x<\frac{π}{2})$D.y=3x+3-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.定義在R上的函數(shù)f(x)及其導(dǎo)函數(shù)f′(x)的圖象都是連續(xù)不斷的曲線,且對(duì)于實(shí)數(shù)a,b(a<b),有f′(a)>0,f′(b)<0.現(xiàn)給出如下結(jié)論:
①?x0∈[a,b],f(x0)=0;
②?x0∈[a,b],f(x0)>f(b);
③?x0∈[a,b],f(x0)≥f(a);
④?x0∈[a,b],f(a)-f(b)=f'(x0)(a-b).
其中結(jié)論正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.甲、乙兩名同學(xué)在5次英語(yǔ)口語(yǔ)測(cè)試中的成績(jī)統(tǒng)計(jì)如下面的莖葉圖所示.
(Ⅰ)現(xiàn)要從中選派一人參加英語(yǔ)口語(yǔ)競(jìng)賽,從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位學(xué)生參加更保險(xiǎn),請(qǐng)說(shuō)明理由;
(Ⅱ)用簡(jiǎn)單隨機(jī)抽樣方法從甲的這5次測(cè)試成績(jī)中抽取2次,它們的得分組成一個(gè)樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對(duì)值不超過(guò)2的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案