11.記a,b分別是投擲兩次骰子所得的數(shù)字,則方程x2-ax+2b=0有兩個(gè)不同實(shí)根的概率為$\frac{1}{4}$.

分析 所有的(a,b)共有6×6=36個(gè),用列舉法求得故滿足條件的(a,b)有9個(gè),由此求得方程x2-ax+2b=0有兩個(gè)不同實(shí)根的概率.

解答 解:所有的(a,b)共有6×6=36個(gè),方程x2-ax+2b=0有兩個(gè)不同實(shí)根,等價(jià)于△=a2-8b>0,
故滿足條件的(a,b)有(3,1)、(4,1)、(5,1)、(5,2)、(5,3)、(6,1)、
(6,2)、(6,3)、(6,4),共9個(gè),
故方程x2-ax+2b=0有兩個(gè)不同實(shí)根的概率為$\frac{9}{36}$=$\frac{1}{4}$,
故答案為:$\frac{1}{4}$.

點(diǎn)評(píng) 本題考查古典概型問(wèn)題,可以列舉出試驗(yàn)發(fā)生包含的事件和滿足條件的事件,應(yīng)用列舉法來(lái)解題是這一部分的最主要思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若一個(gè)圓的圓心為拋物線y=$-\frac{1}{4}$x2的焦點(diǎn),且此圓與直線3x+4y-1=0相切,則該圓的方程是x2+(y+1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,正方形ABCD的邊長(zhǎng)為4,E,F(xiàn)分別為BC,DA的中點(diǎn),將正方形ABCD沿著線段EF折起,使得∠DFA=60°,設(shè)G為AF的中點(diǎn).
(1)求證:DG⊥EF;
(2)求直線GA與平面BCF所成角的正弦值;
(3)設(shè)P,Q分別為線段DG,CF上一點(diǎn),且PQ∥平面ABEF,求線段PQ長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.用反證法證明命題“若自然數(shù)a,b,c的和為偶數(shù),則a,b,c中至少有一個(gè)偶數(shù)”時(shí),對(duì)結(jié)論正確的反設(shè)為( 。
A.a,b,c中至多有一個(gè)偶數(shù)B.a,b,c中一個(gè)偶數(shù)都沒有
C.a,b,c至多有一個(gè)奇數(shù)D.a,b,c都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),F(xiàn)1(-c,0),F(xiàn)2(c,0)為橢圓的兩個(gè)焦點(diǎn),M為橢圓上任意一點(diǎn),且|MF1|+|MF2|=4,過(guò)橢圓焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為3.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)是否存在以原點(diǎn)為圓心的圓,使該圓的任意一條切線與橢圓E恒有兩個(gè)不同交點(diǎn)A,B,且$\overrightarrow{OA}$丄$\overrightarrow{OB}$,若存在,請(qǐng)求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.要得到y(tǒng)=cos(2x-$\frac{π}{4}}$)的圖象,只要將y=cos2x的圖象( 。
A.向左平移$\frac{π}{8}$個(gè)單位B.向右平移$\frac{π}{8}$個(gè)單位
C.向左平移$\frac{π}{4}$個(gè)單D.向右平移$\frac{π}{4}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.現(xiàn)有3本不同的語(yǔ)文書,1本數(shù)學(xué)書,從中任意取出2本,取出的書恰好是一本語(yǔ)文書和一本數(shù)學(xué)書的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.證明:$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{3n+1}$>1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)y=$\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}$$\begin{array}{l}{(x>0)}\\{(x<0)}\end{array}$,使函數(shù)值為17的x的值是( 。
A.-4B.4或$-\frac{17}{2}$C.-4或4D.-4或4或-$\frac{17}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案