分析 利用輔助角公式化積,直接求得f($\frac{π}{6}$);再由f(x)=-2,得$2sin(2x+\frac{π}{3})=-2$,即2x+$\frac{π}{3}=-\frac{π}{2}+2kπ$,求解x即可.
解答 解:∵f(x)=sin2x+$\sqrt{3}$cos2x=$2(\frac{1}{2}sin2x+\frac{\sqrt{3}}{2}cos2x)$=$2sin(2x+\frac{π}{3})$.
∴f($\frac{π}{6}$)=2sin(2×$\frac{π}{6}+\frac{π}{3}$)=2sin$\frac{2π}{3}$=$2×\frac{\sqrt{3}}{2}=\sqrt{3}$;
由f(x)=-2,得$2sin(2x+\frac{π}{3})=-2$,即sin(2x$+\frac{π}{3}$)=-1.
∴2x+$\frac{π}{3}=-\frac{π}{2}+2kπ$,則x=kπ-$\frac{5}{12}π$,k∈Z.
∴滿足f(x)=-2的x的集合為 $\{x|x=kπ-\frac{5}{12}π\(zhòng);,k∈Z\}$.
故答案為:$\sqrt{3}$; $\{x|x=kπ-\frac{5}{12}π\(zhòng);,k∈Z\}$.
點(diǎn)評(píng) 本題考查三角函數(shù)的化簡(jiǎn)求值,考查了兩角和的正弦,是基礎(chǔ)的計(jì)算題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{3}$ | B. | $\frac{5}{3}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com