A. | $\frac{1}{n(n+1)}$ | B. | $\frac{1}{{2}^{n}}$ | C. | $\frac{3}{(n+1)(n+2)}$ | D. | $\frac{5-2n}{6}$ |
分析 由于{Sn+nan}為常數(shù)列,可得n≥2時(shí),Sn+nan=Sn-1+(n-1)an-1,化為:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,再利用“累乘求積”方法即可得出.
解答 解:∵{Sn+nan}為常數(shù)列,∴n≥2時(shí),Sn+nan=Sn-1+(n-1)an-1,化為:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$,
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$$•\frac{{a}_{n-1}}{{a}_{n-2}}$•$\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n-1}{n+1}$•$\frac{n-2}{n}$•$\frac{n-3}{n-1}$•…•$\frac{2}{4}$×$\frac{1}{3}$×$\frac{1}{2}$=$\frac{1}{n(n+1)}$.
n=1時(shí)上式也成立.
∴an=$\frac{1}{n(n+1)}$.
故選:A.
點(diǎn)評 本題考查了“累乘求積”方法、遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | $\frac{7}{2}$ | C. | 4 | D. | $\frac{9}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$-1 | D. | 均不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$] | B. | (-$\frac{2\sqrt{6}}{3}$,$\frac{2\sqrt{6}}{3}$) | C. | (-∞,-$\frac{2\sqrt{6}}{3}$]∪[$\frac{2\sqrt{6}}{3}$,+∞) | D. | (-∞,-$\frac{2\sqrt{6}}{3}$)∪($\frac{2\sqrt{6}}{3}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com