3.如圖,在正方形OABC內.陰影部分是由兩曲線y=$\sqrt{x}$,y=x2(0≤x≤1),在正方形內隨機取一點,則此點取自陰影部分的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 由定積分求陰影面積,由幾何概型可得.

解答 解:由題意和定積分可得陰影部分面積:
S=${∫}_{0}^{1}$($\sqrt{x}$-x2)dx=($\frac{2}{3}$${x}^{\frac{3}{2}}$-$\frac{1}{3}$x3)${|}_{0}^{1}$=$\frac{2}{3}$-$\frac{1}{3}$=$\frac{1}{3}$,
∴由幾何概型可得此點取自陰影部分的概率P=$\frac{1}{3}$
故選:B

點評 本題考查幾何概型,涉及定積分求面積,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.橢圓$\left\{\begin{array}{l}{x=4+2cosθ}\\{y=1+5sinθ}\end{array}\right.$(θ為參數(shù))的焦距是(  )
A.$\sqrt{21}$B.2$\sqrt{21}$C.$\sqrt{29}$D.2$\sqrt{29}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知△ABC中,AB=8,BC=10,AC=6,P點在平面ABC內,且$\overrightarrow{PB}$•$\overrightarrow{PC}$=-9,則|$\overrightarrow{PA}$|的取值范圍為[1,4+$\sqrt{7}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某市近10年的國內生產(chǎn)總值從1000億元開始以8%的速度增長,則這個城市近10年的國內生產(chǎn)總值一共是(  )
A.12500(1.089-1)億元B.12500(1.0810-1)億元
C.12500(1-0.929)億元D.12500(1-0.9210)億元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.過雙曲線C:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的右焦點F作一直線(不平行于坐標軸)交雙曲線于A、B兩點,若點M是AB的中點,O為坐標原點,則kAB•kOM的值為( 。
A.$\frac{5}{4}$B.-$\frac{5}{4}$C.$\frac{4}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.在一批產(chǎn)品中共12件,其中次品3件,每次從中任取一件,在取得合格品之前取出的次品數(shù)ξ的所有可能取值是0,1,2,3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在等差數(shù)列{an}中,Sn=5n2+3n,求an=10n-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的漸近線是y=±$\frac{4}{3}$x,則該雙曲線的離心率$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\frac{\sqrt{13}}{3}$,右焦點F,F(xiàn)在漸近線上的垂足為M,O為坐標原點,若$\overrightarrow{OF}$•$\overrightarrow{MF}$=4,則雙曲線C的方程是$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{4}=1$.

查看答案和解析>>

同步練習冊答案