15.在等差數(shù)列{an}中,Sn=5n2+3n,求an=10n-2.

分析 由題意易得a1和a2,可得公差d,可得通項公式.

解答 解:∵在等差數(shù)列{an}中Sn=5n2+3n,
∴a1=S1=8,a2=S2-S1=18,
故公差d=18-8=10,
∴an=8+10(n-1)=10n-2
故答案為:10n-2

點評 本題考查等差數(shù)列的求和公式,求出數(shù)列的首項和公差是解決問題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓C過點M(1,1),N(5,1),且圓心在直線y=x-2上,則圓C的方程為( 。
A.x2+y2-6x-2y+6=0B.x2+y2+6x-2y+6=0C.x2+y2+6x+2y+6=0D.x2+y2-2x-6y+6=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知拋物線C:y2=2px(p>0)的焦點為F,點A,B在C上,且點F是△AOB的重心,則cos∠AFB為(  )
A.-$\frac{3}{5}$B.-$\frac{7}{8}$C.-$\frac{11}{12}$D.-$\frac{23}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,在正方形OABC內(nèi).陰影部分是由兩曲線y=$\sqrt{x}$,y=x2(0≤x≤1),在正方形內(nèi)隨機取一點,則此點取自陰影部分的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.指出下列變量中,哪些是隨機變量,哪些不是隨機變量,并說明理由.
①任意擲一枚均勻硬幣5次,出現(xiàn)正面向上的次數(shù);
②投一顆質(zhì)地均勻的散子出現(xiàn)的點數(shù)(最上面的數(shù)字);
③某個人的屬相隨年齡的變化;
④在標準狀況下,水在0℃時結(jié)冰.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(1,m)與$\overrightarrow$=(n,-4)共線,且$\overrightarrow{c}$=(2,3)與$\overrightarrow$垂直,則m+n=$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.等差數(shù)列{an}中,a1=4,a3=3,則當n取8或9時,Sn最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.雙曲線C:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{5}{4}$,焦點到漸近線的距離為3,則C的實軸長等于8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線C:$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}$=1(b>0)的離心率為2,則C上任意一點到兩條漸近線的距離之積為( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

同步練習(xí)冊答案