16.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x<0}\\{-{x}^{2}+x,x≥0}\end{array}\right.$,則f(f(2))=3.

分析 先求出f(2)=-22+2=-2,從而f(f(2))=f(-2),由此能求出結(jié)果.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,x<0}\\{-{x}^{2}+x,x≥0}\end{array}\right.$,
∴f(2)=-22+2=-2,
f(f(2))=f(-2)=($\frac{1}{2}$)-2-1=3.
故答案為:3.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

9.化簡:$\frac{5}{6}{a^{\frac{1}{2}}}{b^{-\frac{1}{3}}}×(-3{a^{-\frac{1}{6}}}{b^{-1}})÷{(4{a^{\frac{2}{3}}}{b^{-3}})^{\frac{1}{2}}}$=-$\frac{5}{4}$b${\;}^{\frac{1}{6}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.給定0≤x0<1對一切整數(shù)n>0,令${x_n}=\left\{\begin{array}{l}2{x_{n-1}},2{x_{n-1}}<1\\ 2{x_{n-1}}-1,2{x_{n-1}}≥1\end{array}\right.$,則使x0=x6成立的x0的個數(shù)為64.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.在平面直角坐標系xoy中,O為坐標原點,已知點Q(1,2),P是動點,且三角形POQ的三邊所在直線的斜率滿足$\frac{1}{{{k_{OP}}}}+\frac{1}{{{k_{OQ}}}}=\frac{1}{{{k_{PQ}}}}$.
(1)求點P的軌跡C的方程;
(2)過F作傾斜角為60°的直線L,交曲線C于A,B兩點,求△AOB的面積;
(3)過點D(1,0)任作兩條互相垂直的直線l1,l2,分別交軌跡C于點A,B和M,N,設(shè)線段AB,MN的中點分別為E,F(xiàn).求證:直線EF恒過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若函數(shù)y=loga(x+1)(a>0,a≠1)的圖象過定點,則x值為( 。
A.-1B.0C.1D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)y=f(x),x∈R,對于任意的x,y∈R,f(x+y)=f(x)+f(y),若f(1)=$\frac{1}{2}$,則f(-2016)=-1008.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)y=f(x)是R上的偶函數(shù),且當x≤0時,f(x)=log${\;}_{\frac{1}{2}}$(1-x)+x.
(1)求f(1)的值;
(2)求函數(shù)y=f(x)的表達式,并直接寫出其單調(diào)區(qū)間(不需要證明);
(3)若f(lga)+2<0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.建立適當?shù)目臻g直角坐標系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面EDB;
(2)求二面角F-DE-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知直線的點斜式方程是$y-2=-\sqrt{3}(x-1)$,那么此直線的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習冊答案