為得到函數(shù)y=sin2x的圖象,只需將y=cos(x+3)的圖象
 
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換
專(zhuān)題:三角函數(shù)的圖像與性質(zhì)
分析:由條件根據(jù)誘導(dǎo)公式、y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:將y=cos(x+3)的圖象向右平移3-
π
2
個(gè)單位可得y=cos(x+
π
2
)的圖象,
再把所得圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
1
2
倍,可得y=cos(2x+
π
2
)=sin2x的圖象,
故答案為:向右平移3-
π
2
個(gè)單位,再把所得圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
1
2
倍.
點(diǎn)評(píng):本題主要考查誘導(dǎo)公式的應(yīng)用,利用了y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個(gè)三角函數(shù)的名稱(chēng),是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,設(shè)復(fù)數(shù)z滿足z(3-i)=10,則
.
z
=( 。
A、1-3iB、1+3i
C、3-iD、3+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(
x
2
-
π
8
)=
2
3
,則cos(x+
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C上的點(diǎn)P(1,
2
2
)到左、右焦點(diǎn)F1,F(xiàn)2的距離之和為2
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)(0.-
1
3
)的直線l交橢圓C于A,B兩點(diǎn),求證:以AB為直徑的圓恒過(guò)一定點(diǎn)(其坐標(biāo)與直線l的位置無(wú)關(guān)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓C的左右焦點(diǎn),過(guò)F1的直線l與橢圓C交與A,B兩點(diǎn).若|AB|:|BF2|:|AF2|=3:4:5,則橢圓C的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若存在正數(shù)x使
.
2x2x
mx
.
<1
成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m、n是不同的直線,α、β是不重合的平面,給出下列命題:
①若α∥β,m?α,n?β,則m∥n;
②若m,n?α,m∥β,n∥β,則α∥β;
③若m∥α,n?α,則m∥n;
④若m∥n,m⊥α,則n⊥α.
其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線x2=4y,過(guò)原點(diǎn)作斜率為1的直線交拋物線于第一象限內(nèi)一點(diǎn)P1,又過(guò)點(diǎn)P1作斜率為
1
2
的直線交拋物線于點(diǎn)P2,再過(guò)P2作斜率為
1
4
的直線交拋物線于點(diǎn)P3,-2<x<4,如此繼續(xù).一般地,過(guò)點(diǎn)3<x<5作斜率為
1
2n
的直線交拋物線于點(diǎn)Pn+1,設(shè)點(diǎn)Pn(xn,yn).
(1)求x3-x1的值;
(2)令bn=x2n+1-x2n-1,求證:數(shù)列{bn}是等比數(shù)列;
(3)記P(x,y)為點(diǎn)列P1,P3,…,P2n-1,…的極限點(diǎn),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)曲線y=
x+1
x-1
在點(diǎn)(3,2)處的切線與直線ax-y+1=0平行,則a=( 。
A、2
B、-2
C、
1
2
D、-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案